
Lecture 1: Definition and Examples of Rings

Rings: Motivation and Definition

Throughout your education, you’ve encountered many different mathematical objects that can
be “added” and “multiplied”:

Integers, rationals, real numbers: You learned what it meant to “add” numbers and “mul-
tiply” these numbers in primary school.

Polynomials: You learned to “add” and “multiply” polynomials with real coefficients in high
school

(3x2 + 1x− 0.1) + (5x+ 9) = (3 + 0)x2 + (1 + 5)x+ (−0.1 + 9)

(3x2 + 1x− 0.1) ∗ (5x+ 9) = (3 ∗ 5)x3 + (3 ∗ 9 + 1 ∗ 5)x2 + (1 ∗ 9 + (−0.1 ∗ 5))x+ (−0.1 ∗ 9)

Square matricies: You learned to “add” square matricies by adding the corresponding terms
of the matricies, and to “multiply” square matricies by the matrix multiplication algo-
rithm.

Functions: You “add” functions by constructing a new function whose output values are the
sum (as numbers) of the original functions, and you “multiply” functions by constructing
a new function whose output values are the product (as numbers) of the original functions.

If you were a very apt student, you might have complained to your teachers that the terms
“add” and “multiply” are really overloaded! Why use the same two words to describe such
different operations on such different kinds of mathematical objects?

One reason is that there are properties of these “adding” and “multiplying” operations that
are true in all of these examples – properties such as a + b = b + a and a(bc) = (ab)c and
a(b+ c) = ab+ ac and (b+ c)a = ba+ ca. In this way, the process of “adding” and “multiply-
ing” square matricies (or polynomials, or functions) behaves like the process of “adding” and
“multiplying” numbers. As you get further in mathematics, you will encounter even more math-
ematical objects that have “addition” and “multiplication” operations with these properties,
so mathematicians have a special name for them, a ring.

Definition: A ring is a set R with two operations, called addition (written a+b)
and multiplication (written a ∗ b or a · b or ab) such that

• (R,+) is an abelian group. In case you forget, this means:

– Addition is associative: a+ (b+ c) = (a+ b) + c

– There is an identity element 0, with 0 + a = a+ 0 = a for all a.

– Every element has an inverse a+ (−a) = 0.

– Addition is commutative: a+ b = b+ a.

• Multiplication is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c.
• Multiplication distributes over addition:

a ∗ (b+ c) = a ∗ b+ a ∗ c and (b+ c) ∗ a = b ∗ a+ c ∗ a

Notation: We often write “0” for the additive identity of a ring. If n is a natural
number then rn means r multiplied by itself n times.



Examples of Rings

We’ve seen some examples of rings above.

Example 0: The integers Z, the rational numbers Q, the real numbers R, the complex numbers
C, the polynomials with real coefficients R[x], the n× n matricies of integers Mn(Z), the
continuous functions on the real line C(R).

We can also invent new rings by taking abelian groups we know from group theory, and inventing
a multiplication rule that satisfies the ring axioms.

Example 1: Recall that the elements of the abelian group Z4(= Z/4Z) are the cosets

[0] = {4k | k ∈ Z} [1] = {1 + 4k | k ∈ Z}
[2] = {2 + 4k | k ∈ Z} [3] = {3 + 4k | k ∈ Z}.

We can define a multiplication operation on Z4 according to the table below.

∗ [0] [1] [2] [3]

[0] [0] [0] [0] [0]

[1] [0] [1] [2] [3]

[2] [0] [2] [0] [2]

[3] [0] [3] [2] [1]

In fact, we can make any of the abelian groups Z/nZ into a ring by defining multiplication
as [a][b] = [ab].

Example 2: For any real number n, the abelian group nZ = {nk | k ∈ Z} is a ring under the
standard multiplication of numbers. When n is an integer, nZ is a subset of Z which is
closed under addition, multiplication, and taking additive inverses. In other words, nZ is
a subset of the ring Z which is itself a ring.

Definition: A subset S ⊆ R of a ring which is closed under the addition and
multiplication operations, as well as taking additive inverses, is called a
subring of R.

Example 3: For any ring R, we can consider the polynomials with coefficients in R, written
R[x]. The rules for addition and multiplication are below.
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Example 4: If R and S are two rings, the product R×S is the ring whose elements are pairs
(r, s), where r ∈ R and s ∈ S, and the operations are defined as follows.

(r, s) + (r′, s′) = (r + r′, s+ s′)

(r, s) ∗ (r′, s′) = (r ∗ r′, s ∗ s′)



WARNINGS

Although we can think of rings as “mathematical objects that you can add and multiply, sort
of like numbers,” there are some properties of numbers that are not true in all rings.

Warning 0: Not all rings have an element 1 that satisfies the condition 1a = a1 = a for all
ring elements a, but the most commonly encountered rings in mathematics do. Some
(misguided) people include the requirement “1 exists” in the definition of a ring.

Definition: An element 1 of a ring R that satisfies 1a = a1 = a for all a ∈ R
is called a multiplicative identity of R. A ring with a multiplicative
identity element 1 is called a ring with unity or ring with identity.

If a multiplicative identity exists, it must be unique. To see this, suppose 1a and 1b are
both multiplicative identities. Then 1a1b = 1b and 1a1b = 1a, so 1b = 1a.

Warning 1: Sometimes, ab 6= ba. For example, try taking two elements a and b in the ring of
2 by 2 matricies of integers and calculating ab and ba. Unless you got very lucky when
you chose a and b, you will find that ab 6= ba. There is a special name given to a ring for
which ab = ba is true for all elements a and b.

Definition: A ring R is commutative if for all a, b ∈ R, ab = ba.

Warning 2: You can’t “divide” in rings. In the ring of real numbers, the expression a
b is

shorthand for ab−1, and the symbol b−1 means the multiplicative inverse of b (i.e. the
real number such that b−1 · b = b · b−1 = 1). In an arbitrary ring R, not all elements have
multiplicative inverses. First, it’s possible that a ring doesn’t even contain a multiplicative
identity (so the concept of a “multiplicative inverse” doesn’t even make sense). Even if a
ring contains 1, some elements won’t have a multiplicative inverse. Elements that do are
called units.

Definition: For a ∈ R, an element b ∈ R is called a multiplicative inverse of
a if ab = ba = 1. If a has a multiplicative inverse, it is called invertible or
a unit. If every nonzero element of R is a unit then R is called a division
ring. A commutative division ring is called a field.

Warning 3: For elements a, b in a ring R, sometimes ab = 0 even when a and b are both
nonzero. For example, [2] · [3] = 0 in Z/6Z.

Definition: If a and b are nonzero elements of R such that ab = 0 or ba = 0,
then a and b are called zero divisors. A commutative ring R with identity
is called an integral domain if it has no zero divisors.

For these reasons, you have to be very careful when you’re proving things about rings, because
you might get tempted to use properties that feel true but aren’t. On the other hand, there
are some properties of rings that are true. I’ve proved one of them below.



Proposition: Let R be a ring. For any a ∈ R, 0a = a0 = 0

Proof: Because 0 is an additive identity, 0 + 0 = 0. Combining this with the distributive
property gives

0a = (0 + 0)a = 0a+ 0a.

Adding (-0a) to both sides of the equation proves 0 = 0a. The proof that a0 = 0 is
similar.

Proposition: Let R be a ring with identity. If b1 and b2 are both multiplicative inverses of a,
then b1 = b2.

Proof: Observe that b1ab2 = b11 = b1, and also b1ab2 = 1b2 = b2. Therefore, b1 = b2



Lecture 2: Homomorphisms and Ideals

Homomorphisms

Consider the ring R whose elements are sequences of integers (a0, a1, a2, . . . ) which have only
finitely many nonzero elements. Addition and multiplication are given by

(a0, a1, a2, . . . ) + (b0, b1, b2, . . . ) = (a0 + b0, a1 + b1, a2 + b2, . . . )

(a0, a1, a2, . . . ) ∗ (b0, b1, b2, . . . ) = (a0b0, a1b0 + b0a1, a2b0 + a1b1 + a0b2, . . . )

This ring seems to have a lot in common with the ring of polynomials with integer coefficients
Z[x]. In fact, from a polynomial p(x) ∈ Z[x] you can construct an element of R by letting
(a0, a1, a2, . . . ) be the sequence of coefficients of p(x).

3 + 0x− 5x2 7→ (3, 0,−5, 0, 0, 0, . . . )

and you can check that the rule for adding and multiplying elements in Z[x] is the same as the
rule for adding and multiplying elements in R.

So, although R and Z[x] are not the same ring, the only difference between them is a
superficial one: the names we give to the elements. Soon, we’ll have a fancy word to describe
this notion of sameness, isomorphism, but the most important concept from this example is the
following: when we’re trying to compare two different rings, it’s often helpful to study maps
from the elements of one ring to elements of the other that “preserve the structure.” This idea
is formalized by the definition of a ring homomorphism.

Definition: A ring homomorphism ϕ from a ring R to a ring S is a mapping
from the elements of R to the elements of S that preserves the operations
+ and ∗. That is, for all a, b ∈ R it satisfies

ϕ(a+ b) = ϕ(a) + ϕ(b) and

ϕ(a ∗ b) = ϕ(a) ∗ ϕ(b).

If ϕ is injective (one-to-one) and surjective (onto), it is an isomorphism.
The kernel of ϕ is ker(ϕ) := {r ∈ R | ϕ(r) = 0}, and the image of ϕ is
im(ϕ) := ϕ(R).

In the definition above, the expressions a + b and a ∗ b use the addition and multiplication
operations from R, while the expressions ϕ(a) + ϕ(b) and ϕ(a) ∗ ϕ(b) use the operations from
S.

Remark: Just like in group theory, a ring homomorphism ϕ is injective if and only if ker(ϕ) =
{0}. This follows from the fact that every ring homomorphism is also a group homomor-
phism of the underlying abelian group, so the same proof from group theory carries over
to the context of ring homomorphisms.

Examples

Example 1: Let ϕ : R→ R[x] send a number a to the constant polynomial a.



Example 2: Let ϕ : C(R)→ R send a function f to the number f(5).

Example 3: Let ϕ : Z→ Z/nZ send a to the coset [a].

Example 4: Let R be a ring with identity, and let ϕ : Z→ R send k to 1 + 1 + · · ·+ 1 (where
there are k copies of “1” added together).

Example 5: (from topology). Let ψ : X → Y be a continuous map of topological spaces, and
let C(X), C(Y ) be the rings of continuous functions on X and Y respectively. Define
ϕ : C(Y )→ C(X) by f 7→ f ◦ ψ.

Non-examples: The following are not examples of ring homomorphisms. Explain why.

• Define ϕ : Z→ 2Z by ϕ(a) = 2a.

• Define ϕ : Z→ Z by ϕ(a) = a2.

• Let C∞(R) be the set of functions on R which are infinitely-many times differentiable.
Then define ϕ : C∞(R)→ C∞(R) by ϕ(f) = df

dx .

Proposition: If ϕ : R→ S is a ring homomorphism, then ker(ϕ) is a subring of R, and Im(ϕ)
is a subring of S

Proof: We must show that ker(ϕ) and im(ϕ) are closed under addition, additive inverses, and
multiplication. Because ring homomorphisms are group homomorphisms of the under-
lying abelian group, we know from group theory that ker(ϕ) and im(ϕ) are subgroups.
Therefore, they are closed under addition and additive inverses. Then for a, b ∈ ker(ϕ).

ϕ(ab) = ϕ(a)ϕ(b) = 0

proves that ker(ϕ) is closed under multiplication, and

ϕ(a)ϕ(b) = ϕ(ab)

proves that im(ϕ) is closed under multiplication.

In group theory, the kernels of group homomorphisms weren’t just any subgroups, they were a
special sort of subgroup called a normal subgroup. Likewise, the kernels of ring homomorphisms
will be a special kind of subring called an ideal. To prepare for the definition of an ideal, let’s
quickly review normal subgroups.

Review of Normal Subgroups

Suppose we have a group (G, ·) which is not necessarily abelian. Given g ∈ G and a
subgroup H ⊆ G, we can define the left coset g · H := {g · h | h ∈ H} and the right coset
H · g := {h · g | h ∈ H}. As g varies, these left cosets will partition G, and the right cosets
will also partition G. Now suppose we study the left cosets by asking ourselves the following
question:

Take an element a from a left coset A and multiply it by an element b from
another left coset B. Which left coset will a · b be inside? Does it depend on
the elements from A and B that we chose? If not, then this recipe defines
an operation on the set of left cosets, which would be great!



The sad truth, which we learned in group theory, is that in general the left coset containing
a · b will depend on exactly which a and b we pick from A and B. For example, take a′ = a · ha
and b′ = b · hb, so a′ ∈ A and b′ ∈ B. Then

a′ · b′ = a · ha · b · hb

and as hard as we might try, we can’t simplify the right hand side to prove that it’s in the same
left coset as ab. However, if we knew that there is some h′a ∈ H such that ha · b = b · h′a, then

a′ · b′ = a · ha · b · hb = a · b · (h′a · hb)

would indeed belong to the same left coset as a · b. This kind of reasoning leads to following
fact in group theory:

Fact: For a subgroup H of G, the following three statements are equivalent

1. For every h ∈ H and g ∈ G, there is some h′ ∈ H such that hg = gh′.

2. The partition of G into left cosets of H equals the partition of G into right cosets of
H.

3. The operation [a] · [b] = [a · b] on left (and right) cosets is well-defined.

A subgroup H is normal if the above (equivalent) conditions are true; in this case, the left
cosets are the same as the right cosets (so we just use the word “cosets” to refer to both), and
we call the group of cosets the quotient group of G by H, written G/H.

Another way your professor might have motivated the study of normal subgroups is by
proving that for any group homomorphism ϕ : G→ G′, the kernel ker(ϕ) isn’t just any subgroup
– it has the nice property that for any g ∈ G and h ∈ ker(ϕ), there is another h′ ∈ ker(ϕ) such
that h · g = g · h′. But this is exactly the property of being a normal subgroup that we saw in
our discussion of “what makes the group operation on cosets well-defined”.

These two ways of motivating the property of normality (as the condition that ensures that
the cosets form a group, or as a curious property of kernels of homomorphisms) may seem
different, but are actually related by the first isomorphism theorem of groups which states that
for any homomorphism ϕ,

G

ker(ϕ)
∼= Im(ϕ)

This isomorphism is one of the most conceptually important facts in all of group theory; it
should be part of your subconscious intuition about homomorphisms and normal subgroups by
now.

Now let’s do the same thought experiment with rings.

Ideals: the “Normal Subgroups of Ring Theory”

Suppose S is a subring of a ring R. R is an abelian group with respect to the addition
operation, so because every subgroup of an abelian group is normal, S is a normal subgroup of
R. Therefore the operation

[a] + [b] = [a+ b]

is well-defined, and R/S is a group. But what about multiplication? Can we multiply cosets
to make R/S into a ring? To answer this, we first consider the following question



Take an element a from a coset A and an element b from another coset B.
We already know that if we add a and b, the coset containing a+ b doesn’t
depend on which elements from A and B that we chose. But now what if
we multiply the elements a and b? Will the coset of ab depend on which
elements that we chose? If not, then the operation

[a][b] = [ab]

would be well-defined!

The sad truth is that in general the coset containing ab will depend on exactly which a and b
we pick from A and B. For example, take a′ = a + sa and b′ = b + sb, so a′ ∈ A and b′ ∈ B
(remember, the group operation that we’re using to define the cosets is addition... this is why
we’ve written a′ = a+ sa not a′ = asa). Then

a′b′ = ab+ asb + sab+ sasb

If we knew that asb ∈ S and sab ∈ S, then a′b′ would be in the same coset as ab. One condition
on the subring S that causes this property to be true leads to the definition of an ideal

Definition: Let S be a subring of R. If, for any elements s ∈ S and r ∈ R, we
have rs ∈ S and sr ∈ S, then S is an ideal of R.

Notice that the definition of a subring already guarantees that if s, r ∈ S, then rs and sr
are in S. The condition of being an ideal is stronger: it says that when you multiply an element
of S by any element (even one outside of S), you get something inside S. You can think that
an ideal “absorbs” the ring into the ideal. Check that the following are ideals:

Example 0: In any ring R, the zero ideal (consisting of just the element 0) and the whole ring
R are both ideals of R.

Example 1: nZ ⊆ Z is an ideal.

Example 2: In R[x], the subring of polynomials that have zero constant term is an ideal.

Example 3: In C(R), the set of continuous functions that vanish at x = 9 is an ideal.

Relationship between ideals and quotient rings

Proposition: If I ⊆ R is an ideal, then R/I is a ring, with addition and multiplication of
cosets defined by

[a] + [b] := [a+ b] and [a][b] := [ab]

Proof: The discussion above proves that the addition and multiplication operations are well-
defined. Also, because I ⊆ R is a normal subgroup, we know from group theory that R/I
is a group with respect to the addition operation defined above. It is abelian because

[a] + [b] = [a+ b] = [b+ a] = [b] + [a]

The fact that multiplication is associative is shown by

[a]([b][c]) = [a][bc] = [a(bc)] = [(ab)c] = [ab][c] = ([a][b])[c]

and the fact that distribution holds is given by

[a]([b] + [c]) = [a][b+ c] = [a(b+ c)] = [ab+ ac] = [a][b] + [a][c]

(the fact that ([b] + [c])[a] = [b][a] + [c][a] is proved in a similar way).



Proposition: Let ϕ : R→ S be a ring homomorphism. Then ker(ϕ) is an ideal in R, and

R

ker(ϕ)
∼= Im(ϕ)

Proof: We already proved that ker(ϕ) is a subring; now, we must verify that it is an ideal. Let
r ∈ R and k ∈ ker(ϕ). The fact that kr, rk ∈ ker(ϕ) is shown by

ϕ(rk) = ϕ(r)ϕ(k) = ϕ(r)(0) = 0

ϕ(kr) = ϕ(k)ϕ(r) = (0)ϕ(r) = 0.

To prove the isomorphism, define the map

R

ker(ϕ)
→ Im(ϕ)

[r] 7→ ϕ(r)

This is well-defined, since ϕ(r + k) = ϕ(r) + ϕ(k) = ϕ(r) for any k ∈ ker(ϕ).

The kernel of this map is the set of cosets [r] for which ϕ(r) = 0. This is just the zero
coset, so the kernel is zero and therefore the map is injective.

The fact that the map is surjective is seen by taking an arbitrary element s of Im(ϕ), so
s = ϕ(r) for some r ∈ R, and observing that [r] is sent to ϕ(r) = s under the map above.
Therefore, the above map is injective and surjective, hence an isomorphism.

Question: Determine whether the following subsets of Z × Z are subrings, ideals, or neither.
If it is an ideal I, describe (Z× Z)/I.

• {(a, a) | a ∈ Z}.
• {(2a, 2b) | a, b ∈ Z}.
• {(2a, 0) | a ∈ Z}.
• {(a,−a) | a ∈ Z}.

Question: Determine whether the following subsets of Z[x] are subrings, ideals, or neither. If
it is an ideal I, describe Z[x]/I.

• All polynomials whose constant term is a multiple of 5.

• All polynomials whose coefficient of x5 is 5.

• All polynomials whose constant term is 0, and whose coefficient of x is 0.

• All polynomials p such that p(7) = 0.

• All polynomials p such that p(7) = 1.

• All polynomials where only even powers of x appear (this is sometimes written Z[x2]).

• All polynomials whose coefficients sum to zero.

• All polynomials whose coefficients are divisible by 3.

Properties of ideals: a preview

Next class, we will learn about all sorts of properties of ideals. I want to state just one
today.



Proposition: Let I be an ideal in a ring R. If I contains a unit, then I = R.

Proof: Let u ∈ I be a unit. This means that u has a multiplicative inverse u−1 ∈ R. Then for
any a ∈ R, we see that a = au−1u, so a ∈ I.

Corollary: The only ideals in a field F are I = {0} and I = R.



Lecture 3: Ideals

New Ideals from Old

If we have two ideals I, J in ring R, we can construct new ideals related to I and J .

Definition: Let I and J be ideals in R.

• I + J := {a+ b | a ∈ I, b ∈ J}.
• IJ consists of all finite sums of elements of the form ab, where a ∈ I,
b ∈ J .

• I ∩ J is the intersection of I and J .

Question: Let I = 4Z and J = 6Z, what are the ideals I + J , IJ , and I ∩ J? Explain why
I ∪ J is not an ideal.

Question: What are the containment relationships between I, J, I + J, and I ∩ J?

There is also a way to construct an ideal out of any subset of elements of S.

Definition: Let A be a subset of the ring R. The ideal generated by A is the
smallest ideal of R containing A, and is written (A). An ideal generated by
a single element is called a principal ideal; an ideal generated by finitely
many elements is a finitely generated ideal.

Sometimes the definition of (A) is hard to work with; here are other ways to think about (A).

• (A) is the intersection of all ideals containing the subset A.

• If R is commutative, then (A) consists of all elements of R that can be written as

r1a1 + ...+ rnan

where the ri’s and ai’s are elements of R and A, respectively.

Question 1: In the ring Z, describe (5) and (6, 4).

Question 2: In the ring Z[x], describe (x), (5), and (5, x).

Question 3: Find generating sets for the kernels of the following homomorphisms.

• Z[x]→ Z given by a0 + a1x+ a2x
2 + ... 7→ a0.

• Z[x]→ (Z/3Z)[x] given by a0 + a1x+ a2x
2 + ... 7→ [a0] + [a1]x+ [a2]x

2 + ....

• Z[x]→ Z/3Z by a0 + a1x+ a2x
2 + ... 7→ [a0].

Types of Ideals

On the first day of class, we learned words to describe rings that had certain nice properties.



1. In a field (commutative ring with identity where every nonzero element is a unit), we can
divide by nonzero elements.

2. In an integral domain (commutative ring with identity having no zero divisors), we can’t
always divide but we have the next best thing, the cancellation property: If a 6= 0 and
ab = ac, then b = c.

Last class, we constructed quotient rings R/I from ideals I ⊆ R. Now, we’ll see that certain
properties of the ideal translate into other properties of the quotient ring. Specifically, we can
determine whether R/I will be a field or an integral domain just by studying I.

When will R/I be a field?

To answer this question, we first classify fields as the commutative rings with identity that
have no nontrivial proper ideals, then prove that the ideals of a quotient ring are precisely the
ideals containing I. This will motivate the definition of maximal ideal as an ideal which is not
contained in any ideal except R and itself: it is precisely these maximal ideals of a commutative
ring with identity whose quotient R/I is a field.

Proposition: A commutative ring with identity R is a field if and only if its only ideals are
(0) and R.

Proof: Because every nonzero element of a field is a unit, and every ideal that contains a unit
is the entire ring, it follows that the only ideals of a field are (0) and the entire field.
Conversely, let R be a ring such that the only ideals are 0 and R. Then for every nonzero
x ∈ R, the ideal (x) must be all of R. This means that 1 = rx for some r ∈ R, so x is
invertible.

The next proposition describes the ideals of a quotient ring.

Proposition: Let ϕ : R → S be a ring homomorphism. If I is an ideal in S, then ϕ−1(I) is
an ideal in R.

Proof: Let a, b ∈ ϕ−1(I). Using the definition of homomorphisms, ϕ(a+ b), ϕ(ab), ϕ(−a) ∈ I,
so ϕ−1(I) is a subring. Now let r ∈ R, j ∈ ϕ−1(I), and notice that ϕ(rj) = ϕ(r)ϕ(j) ∈ I
since I is an ideal and ϕ(j) ∈ I. A similar computation shows ϕ(jr) ∈ I, so rj, jr ∈
ϕ−1(I), proving that ϕ−1(I) is an ideal.

In the above proposition, because every ideal of S contains 0 ∈ S, it follows that every ideal of
R of the form ϕ−1(I) contains ker(ϕ).

Proposition: Let I be an ideal of a ring R, and let ϕ : R → R/I be the quotient map. The
maps below are inverses (and hence define a bijection).{

Ideals in
R that contain I

}
↔
{

Ideals
in R/I

}
J 7→ ϕ(J)

ϕ−1(K)←[ K

Proof: First, we verify that ϕ(J) is indeed an ideal in R/I.

ϕ(J) is a subring: This follows from the fact that ϕ is a homomorphism (check this!),
and ϕ(J) is the image of the homomorphism ϕ

∣∣
J
, and we know that images of

homomorphisms are subrings.



ϕ(J) is an ideal: Any element of ϕ(J) can be written as [j] for some j ∈ J , and let
[s] ∈ R/I. Then [j][s] = [js] and [s][j] = [sj] are also inside ϕ(J) (since js, sj ∈ J),
so ϕ(J) is an ideal.

So the map is well-defined. We also know (from the above proposition) that for any
ideal K ∈ R/I, ϕ−1(K) is an ideal. To complete the proof it suffices to show that
ϕ(ϕ−1(K)) = K for all ideals K in R/I, and ϕ−1(ϕ(J)) = J for all ideals J in R
containing I (so that K 7→ ϕ−1(K) and J 7→ ϕ(J) are inverse maps). The first claim
follows from the fact that ϕ is surjective. To prove the second, notice that if ϕ(a) = ϕ(j)
for some j ∈ J , then a − j ∈ I ⊆ J , so a ∈ J . Therefore, if ϕ(a) ∈ im(J), then a ∈ J .
This proves that ϕ−1(ϕ(J)) = J .

Combining this with the above, we see that a quotient ring R/I of a commutative ring with
identity is a field precisely when there are no ideals “in between” I and R.

Definition: An ideal I of R is called maximal if there are no ideals J satisfying
I ( J ( R

Corollary: Let I be an ideal in a commutative ring R with identity. Then R/I is a field if
and only if I is maximal.

When will R/I be an integral domain?

Let R be a commutative ring with identity. In an integral domain, a product ab is zero only
if a or b is zero. In a quotient ring R/I, the zero element is the coset I itself. Unsurprisingly,
the condition that R/I is an integral domain translates into the condition that ab ∈ I only if a
or b is in I.

Definition: An ideal I of a commutative ring R is prime if I 6= R and whenever
ab ∈ I, then either a ∈ I or b ∈ I.

Proposition: Let I be an ideal in a commutative ring R with identity. Then R/I is an integral
domain if and only if I is prime.

Proof: In the ring R/I, then zero element is the coset [0] = I. In other words, [a] = 0 if and
only if a ∈ I. After this observation, the proof is a matter of following the definitions:

R/I is an integral domain ⇐⇒ [a][b] = 0 only if [a] = 0 or [b] = 0

⇐⇒ ab ∈ I only if a ∈ I or b ∈ I
⇐⇒ I is a prime ideal



Lecture 4: Fractions and the Chinese
Remainder Theorem

Today, we discuss two unrelated topics. The first topic is a way to enlarge a ring by
introducing new elements that act as multiplicative inverses of non-units, just like making
fractions of integers enlarges Z into Q. The second topic will be the first substantial theorem
of the course, the chinese remainder theorem.

Fractions

Most integers don’t have integer inverses. This is annoying, because it means we can’t even
solve linear equations like 2x = 5 in the ring Z. Of course, one way to resolve this issue is to
work in Q instead, where the solution is x = 5/2. Because Q is a field, any equation ax = b
with a, b ∈ Q and a 6= 0 will always have a solution, namely b/a, because we find by dividing
both sides of the equation by a. But what if we want to solve ax = b in a general ring R (so
a, b ∈ R)? Can we always find a field that contains R so that we can divide by elements?

Let R be a commutative ring with identity. If we try to enlarge R into a field in the most
naive way possible, using as inspiration the way we enlarge Z into Q, we might try the following
definition.

Naive definition 1: Let R′ be the ring whose elements are of the form a/b, where a, b ∈ R.
Addition is given by a/b+ c/d = (ad+ bc)/bd, and multiplication is given by (a/b)(c/d) =
ac/bd.

Sad fact: This isn’t even a ring because it fails to be a group under the addition operation:
the additive identity element would need to be 0/1, and there’s no way to find an inverse
for a/b ((−a)/b is not an inverse because a/b+ (−a)/b = 0/(b2)).

Your reaction to the failure of this definition is probably “Oh, of course you need some condition
saying that 0/(b2) is the same as 0/1. In Q, two fractions a/b and c/d are the same number
when ad = bc; let’s modify our definition so that the objects are equivalence classes of fractions
under this relation.”

Naive definition 2: Let R′ be the ring whose elements are equivalence classes of fractions a/b,
where a/b is equivalent to c/d if ad = bc. Addition is given by a/b+ c/d = (ad+ bc)/bd,
and multiplication is given by (a/b)(c/d) = ac/bd.

Sad fact: Under this equivalence relation, everything is equivalent to the fraction 0/0, so R′

only has a single element.

Again taking our inspiration from fractions of integers, we might decide to prohibit 0 from
being a denominator.

Naive definition 3: Let R′ be the ring whose elements are equivalence classes of fractions
a/b, b 6= 0, where a/b is equivalent to c/d if ad = bc. Addition is given by a/b + c/d =
(ad+ bc)/bd, and multiplication is given by (a/b)(c/d) = ac/bd.

Sad fact: This won’t (in general) be an enlargement of R, because it won’t (in general) contain
R as a subring. Suppose, for example, that R contains zero divisors, so ab = 0 for some
nonzero a, b. Then a/1 = 0/b, and 0/b = 0/1, so a/1 = 0/1. We were hoping that
the elements {r/1 | r ∈ R} would be a copy of R inside R′ and we have failed, because
a/1 = 0/1 for any zero divisor a.



Somehow, the presence of zero divisors in our ring prevents us from using this fraction con-
struction. In retrospect, this sort of makes sense – in a field, you never have zero divisors. And
when you “enlarge” a ring, the zero divisors will still be zero divisors in the enlarged ring. So
we were naive to think we could ever enlarge a ring with zero divisors into a field. However, for
integral domains (which don’t have zero divisors), we can.

Definition: Let R be an integral domain. The field of fractions of R is the
field F consisting of equivalence classes of pairs (a, b) of elements of R,
b 6= 0, where (a, b) ∼ (c, d) if ad = bc. Normally, an equivalence class [(a, b)]
is written a/b. Addition and multiplication on F are defined by

a

b
+
c

d
=
ad+ bc

bd
a

b

c

d
=
ac

bd
.

Remark: There is a lot to check in the above definition: the equivalence relation is indeed
an equivalence relation, the addition and multiplication operations are well-defined and
make F into a ring, and that the ring is indeed a field.

We motivated the construction of the field of fractions as a way to “enlarge” a ring into a
field; the next proposition verifies that the field of fractions is indeed an “enlargement” of R.

Proposition: The map ϕ from an integral domain to its field of fractions given by

r 7→ r

1

is an injective homomorphism.

Proof: To check that ϕ is a homomorphism:

ϕ(r + s) =
r + s

1
=

1r + 1s

1 · 1
=
r

1
+
s

1
= ϕ(r) + ϕ(s)

ϕ(rs) =
rs

1
=
r

1
· s

1
= ϕ(r)ϕ(s)

To check that ϕ is injective:

ker(ϕ) =

{
r ∈ R | r

1
=

0

1

}
= {r ∈ R | r · 1 = 0 · 1} = {0}

We can generalize this construction. The only reason we need R to be an integral domain
is that strange things happen when you let zero divisors be denominators of fractions. So, even
when R is not an integral domain, we can pick a subset D ⊆ R of “things that are allowed to
be denominators,” and consider the ring of elements of the form a/b, where a ∈ R and b ∈ D.
As long as D contains no zero divisors, D is closed under multiplication (so that the addition
and multiplication rules make sense), and D doesn’t contain zero, the construction still works.



Definition: Let R be a commutative ring with identity, and let D be a nonempty
subset of R such that 0 /∈ D, D contains no zero divisors, and D is closed
under multiplication. The ring D−1R is the ring consisting of equivalence
classes of pairs (a, b), where a ∈ R and b ∈ D, and (a, b) ∼ (c, d) if ad = bc.
Addition and multiplication are defined by

(a, b) + (c, d) = (ad+ bc, bd)

(a, b)(c, d) = (ac, bd).

Normally, an element (a, b) is written a/b.

If R is an integral domain, its field of fractions is the same as D−1R where D = R\{0}.
We were motivated to study fractions so that linear equations would have solutions. But

what about equations involving higher-order polynomials? In fact, there is a way to start with
a field F and a polynomial with coefficients F , and enlarge F in such a way that the polynomial
is forced to have a root in the enlarged field. This is the beautiful theory of field extensions,
which we will study later in the course.

Chinese Remainder Theorem

Consider the following riddle (allegedly first posed by Brahmagupta, a 7th century Indian
mathematician):

An old woman is carrying eggs to sell in the market when the eggs are
crushed by a horse. The horseman wants to know how many eggs she had so
that he can repay her, but she only knows the following: when she arranged
them into groups of 2 or 3 or 4 or 5 or 6, there was always precisely one left
over. But when she arranged them into groups of 7, there were none left
over. What is the smallest number of eggs she might’ve had?

One way to express this problem mathematically is the following:

Consider the homomorphism

Z→ Z2 × Z3 × Z4 × Z5 × Z6 × Z7

given by the product of the quotient homomorphisms Z→ Zi. What is the
smallest number in the preimage of ([1], [1], [1], [1], [1], [0])?

The topic of this section, the chinese remainder theorem, does not answer this riddle, but it tells
us important information about the kernel and image of the homomorphism. In fact, it does it
in the more general setting of any product of quotient homomorphisms from any commutative
ring with unity R

R→ R

I1
× R

I2
× · · · × R

In

not just the case when R = Z. Here’s why we might care about the kernel and image of this
map using the egg riddle as motivation.

1. There is no way to determine the exact number of eggs the woman was carrying because
there are infinitely many elements in the preimage. For example, the number 2 ∗ 3 ∗ 4 ∗
5 ∗ 6 ∗ 7 = 5040 is in the kernel of this homomorphism, so if you find any element in
the preimage, you can add 5040 to get another element in the preimage. But is (5040)



the entire kernel? The chinese remainder theorem will tell us exactly what the kernel
is (in our case, (420)), which answers the question “Up to what additive factor can you
determine an element of Z just by knowing its image in Z2,Z3,Z4,Z5,Z6, and Z7?”

2. The old woman had redundant information: if you group eggs into groups of four and
have one left over, then you already know that if you group the eggs into groups of
two, you’ll have one left over. The old woman wasted time in making the groups of
two. This inefficiency in the woman’s choice of grouping sizes is reflected in the fact that
the homomorphism is not surjective. For example ([1], [0], [0], [0], [0], [0]) is not in the
image. If the woman wanted to be efficient and guarantee that none of her information
is redundant, she should have chosen her “egg grouping sizes” to be pairwise coprime. In
the more general ring-theory context, the condition of being coprime translates into the
condition that the ideals Ik are pairwise comaximal.

Definition: Ideals I and J in a ring R are comaximal if I + J = R

In other words, the chinese remainder theorem will answer the following riddle.

An old woman is carrying an element of a commutative ring to sell in the
market when the ring element gets crushed by a horse. The woman forgets
exactly which ring element it was, but knows which coset it belongs to mod-
ulo the comaximal ideals I1, I2, . . . , Ik. Exactly how much information does
this determine about the original ring element?

Theorem (Chinese Remainder Theorem): Let I1, . . . , In be ideals in a commutative ring
R with identity, and consider the homomorphism

R→ R

I1
× R

I2
× · · · × R

In
r 7→ ([r], [r], . . . , [r])

(the first bracket signifies a coset of I1, the second is a coset of I2, etc.)

1. The kernel equals I1 ∩ I2 ∩ · · · ∩ In
2. If the ideals are pairwise comaximal (i.e., Ij and I` are comaximal when j 6= `), then

the map is surjective and

I1 ∩ I2 ∩ · · · ∩ In = I1I2 . . . In

so the first isomorphism theorem gives

R

I1I2 . . . In
∼=
R

I1
× R

I2
× · · · × R

In
.

Proof: To prove the first claim, observe that r ∈ R is in the kernel precisely when r is a
representative of the zero coset with respect to each ideal. But this is just another way
of saying that r is contained in each ideal, so the kernel is I1 ∩ · · · ∩ In.

We prove the second claim only in the n = 2 case (the full proof has an extra inductive
step which is not very educational).



Case n = 2: Let I, J be two comaximal ideals. To show that the homomorphism is sur-
jective, pick i ∈ I and j ∈ J satisfying i+ j = 1 (this is possible by the comaximality
condition). If we reduce both sides of this equation modulo i, we see that [j] = [1]
modulo i, and also by reducing modulo j, we see that [i] = [1] modulo j. This shows
that

R→ R/I ×R/J
j 7→ ([1], [0])

i 7→ ([0], [1])

So in particular, any element ([ri], [rj ]) ∈ R/I ×R/J is the image of rij + rji. This
proves surjectivity.

To show that I ∩ J = IJ , notice that because everything in IJ is both in I and also
in J , the inclusion I ∩ J ⊇ IJ is clear. To see the opposite inclusion, let r ∈ I ∩ J .
Then r = r1 = r(i + j) = ir + rj. Because r ∈ J , it follows that ir ∈ IJ . And
because r ∈ I, it follows that rj ∈ IJ . Therefore, ir + rj = r ∈ IJ .



Lecture 5: R[x]/(x2 + 1) and Polynomial
Long Division

Study of (x2 + 1) ⊆ R[x]

Question: Describe (in words) the ideal I = (x2 + 1) in R[x] and give several examples of
different elements of I.

Question: Find several different coset representatives of [0] ∈ R[x]/I (sometimes written 0)
and [1] = 1 ∈ R[x]/I.

Helpful tip: In the ring R[x]/I, the element [x2] is the same element as [−1]. This means we
can “simplify” any element of R[x] by replacing instances of x2’s with −1’s. For example,

[3x4 + x3 − x2 + x+ 9] = [3][x2][x2] + [x][x2]− [x] + [9]

= [3][−1][−1] + [x][−1]− [x] + [9]

= [3− x− x+ 9]

= [−2x+ 12]

Note: this works for more complicated ideals too. For example, in the ring R[x]/(x3 −
2x2 + x+ 9), the element [x3] equals the element [2x2− x− 9], so [x3 + x+ 1] = [2x2− 8].

This tip tells us that every element in R[x]/I can be written in the form [ax+b]. If you multiply
two elements of R[x]/I that are written in this form, we get

[ax+ b][cx+ d] = [(ax+ b)(cx+ d)] = [acx2 + (ad+ bc)x+ bd] = [(ad+ bc)x+ (bd− ac)]

This should remind us of multiplication of complex numbers, (ai + b)(ci + d) = (ad + bc)i +
(bd− ac). Let’s prove that R/I is isomorphic to C.

Claim: The map

ϕ : R[x]→ C
a0 + a1x+ · · ·+ anx

n 7→ a0 + a1i+ · · ·+ ani
n

is a surjective homomorphism with kernel (x2 + 1).

Proof:

Homomorphism: For a polynomial p ∈ R[x], ϕ(p) is the number you get when you
evaluate p at the complex number i, p(i). Then

ϕ(p+ q) = (p+ q)(i) = p(i) + q(i) = ϕ(p) + ϕ(q)

ϕ(pq) = (pq)(i) = p(i)q(i) = ϕ(p)ϕ(q)

so ϕ is a homomorphism.

Surjective: The complex number ai+ b is the image of ax+ b ∈ R[x].



Kernel is (x2 + 1): Because ϕ(x2 + 1) = i2 + 1 = 0, it is clear that x2 + 1 ∈ ker(ϕ), and
therefore that (x2+1) ⊆ ker(ϕ). To show the opposite inclusion, suppose p ∈ ker(ϕ).
By dividing p by (x2+1) using polynomial long division, we can write p = (x2+1)q+r
for some polynomials q and r with deg(r) < 2. Then 0 = ϕ(p) = p(i) = r(i), but the
only polynomial of degree < 2 with r(i) = 0 is the zero polynomial, so r = 0. This
proves that p = (x2 + 1)q, so p ∈ (x2 + 1).

Corollary: R[x]/(x2 + 1) ∼= C

Comments:

• The fact that R[x]/(x2 +1) is isomorphic to a field tells us that R[x]/(x2 +1) is itself
a field. Therefore (x2 + 1) is maximal. This is related to the fact that you cannot
factor x2 + 1. (to understand this last sentence, try to prove that (x2 − 1) is not
maximal!).

• Notice that x2+1 is a polynomial with coefficients in R and no roots in R. By taking
the quotient of R[x] by (x2 + 1), we enlarged R to a new field C in which x2 + 1
has roots. Today, this should seem magical. But when we study field extensions in
a few weeks, we will understand on a deep level why this construction works and
generalize it.

Polynomial long division

You learned the following fact in secondary school:

Observation: When you divide a polynomial f ∈ R[x] by g ∈ R[x], the degree
of the remainder polynomial is less than deg(g).

Example: Divide 3x4 + 2x3 + 4 ∈ R[x] by 2x2 + 1 ∈ R[x] using polynomial long division.

The next theorem is a mathematically precise formulation of the above well-known fact.

Theorem: Let f, g ∈ R[x] with g 6= 0. There are unique polynomials q, r ∈ R[x] such that

f = qg + r

and either r = 0 or deg(r) < deg(g).

Proof: To prove existence, note if deg(f) < deg(g), then q = 0, r = f . Otherwise, write

f = anx
n + lower order terms

g = bkx
k + lower order terms

Then f and (anb
−1
k xn−k)g have the same leading term, so r1 = f − (anb

−1
k xn−k)g has

smaller degree than f . We can write

f = (anb
−1
k xn−k)g + r1

If deg(r1) < deg(g), then we’re done. Otherwise, we repeat the process on r1: write

r1 = cmx
m + lower order terms

g = bkx
k + lower order terms



and

r1 = (cmb
−1
k xm−k)g + r2, so

f = (anb
−1
k xn−k)g + (cmb

−1
k xm−k)g + r2 = (anb

−1
k xn−k + cmb

−1
k xm−k)g + r2

We can repeat the process until deg(ri) < deg(g), proving existence. To prove uniqueness,
suppose

f = qg + r and f = q̃g + r̃

are two such expressions for f . Then

g(q − q̃) = r̃ − r

Because the right hand side cannot be a polynomial of degree ≥ deg(g), it must be the
case that q − q̃ = 0 and therefore that r̃ − r = 0.

In the first half of today’s class, we found a way to enlarge the field R by taking the quotient
of its polynomial ring R[x] by a maximal ideal. We’ll need to do this with fields that aren’t
necessarily R as well, but first we need to understand how polynomials behave when their
coefficients come from some field other than R. If you look at the proof above, we never used
the fact that the field was R! So the proof generalizes immediately to the following

Theorem: Let F be a field, and f, g ∈ F [x] with g 6= 0. There are unique polynomials
q, r ∈ F [x] such that

f = qg + r

and either r = 0 or deg(r) < deg(g).

Proof: The proof is the same as when f, g ∈ R[x].

Example: Divide 3x4 + 2x3 + 4 ∈ Z5[x] by 2x2 + 1 ∈ Z5[x] using polynomial long division.

Practice problems (optional – do not hand in)

Gallian 16-1: Let f(x) = 4x3 + 2x2 + x + 3 and g(x) = 3x4 + 3x3 + 3x2 + x + 4, where
f, g ∈ Z5[x]. Compute f + g and fg.

Gallian 16-2: In Z3[x], show that x4 + x and x2 + x determine the same function (that is,
f(a) = g(a) for all a ∈ Z3)

Gallian 16-3: Let f(x) = x2 + 3x+ 2 ∈ Z6[x]. Show that there are four elements a ∈ Z6 such
that f(a) = 0. Wednesday, we will learn that for any polynomial nonzero f ∈ F [x] where
F is a field (which Z6 is not), the number of elements a ∈ F where f(a) = 0 cannot be
larger than the degree of f .

Question: Find a way to write 2x2 + 4 as a product of two degree-one polynomials in C[x]. Is
it possible to write it as a product of degree-one polynomials in R[x]?



Lecture 6: Irreducibility of Polynomials

Consequences of long division

Last class, we talked about how the polynomial long division algorithm works for polynomials
with coefficients in any field, not just real numbers.

Recall: If F is a field and f, g ∈ F [x] with g 6= 0, then there are unique q, r ∈ F [x] such
that f = gq + r and either r = 0 or deg(r) < deg(g). The polynomial r is called the
remainder term.

Let’s remind ourselves of a few definitions

Definition: Let f, g ∈ D[x], where D is an integral domain. We say that g
divides f , or that g is a factor of f , if f = gq for some q ∈ D[x]. We say
that a ∈ D is a root of f if f(a) = 0.

Remember that every field is an integral domain, so these definitions apply to fields too. The
division algorithm has some interesting corollaries. In all of the below, F is a field and f ∈ F [x].

Corollary 1: For any a ∈ F , the remainder term when you divide f by (x−a) is the constant
polynomial f(a).

Example: Divide f(x) = x2 + 3 ∈ Z5[x] by x − 3 ∈ Z5[x]. Verify that it equals the constant
polynomial f(3).

Proof: The divison algorithm gives f = (x−a)q+r, where r has degree < 1, so r is a constant
polynomial. Evaluating both sides of the polynomial at x = a reveals that f(a) = 0+r(a).
Because r is a constant polynomial, it equals f(a).

Corollary 2: For any a ∈ F , f(a) = 0 if and only if (x− a) is a factor of f(x).

Proof: By corollary 1, f(a) = 0 if and only if the remainder term when you divide f by (x−a)
is zero. This is true if and only if f = (x− a)q for some q ∈ F [x].

Corollary 3: The number of roots of f is at most deg(f).

Proof: This is clearly true for degree 1 polynomials, since if ax + b = 0, then ax = −b and
x = −ba−1. Now use induction: assume we know that the number of roots of a degree
n− 1 polynomial has at most n− 1 roots, and suppose f has degree n. If f has no roots,
then the statement is obviously true. If f has at least one root c, then f = (x − c)q for
a degree n − 1 polynomial q. Because every root of f must be either a root of (x − c)
(which has one root) or q (which has at most n− 1 roots), it follows that f has at most
n roots. This completes the induction.

Questions:

• What are the roots of x2 − x ∈ Z5[x]?

• What are the roots of x2 − x ∈ Z6[x]?

• What are the roots of x100 ∈ R[x]?



The second corollary is particularly important: it says that roots of f are “the same thing” as
linear factors of f . This also motivates the definition of the multiplicity of a root.

Definition: Let f ∈ D[x], where D is an integral domain, and let a ∈ D be a
root of f . The multiplicity of a is the largest number k ∈ Z such that
(x− a)k is a factor of f .

Question: What are all the roots of f(x) = x5 + 4x4 + 4x3 − x2 − 4x + 1 ∈ Z5[x], and what
are their multiplicities?

Can we always check whether f factors just by looking for roots? No: consider x4 + 2x2 + 1 in
R[x]. This polynomial is positive for every real number (so it has no roots), but it still factors
as (x2 +1)(x2 +1). So even though it has no linear factors (i.e. has no roots), it still has factors
of higher degree.

In the same way that prime numbers in Z act as the “indivisible numbers that make up all
other numbers”, so too will “irreducible polynomials” act as the “indivisible polynomials that
make up all other polynomials.”

Irreducible Polynomials

Definition: Let F be a field. A nonconstant polynomial f(x) ∈ F [x] is called
reducible over F (or sometimes just “reducible”) if f(x) = g(x)h(x) for
polynomials g(x), h(x) ∈ F [x] with smaller degree than f(x), and it is called
irreducible over F (or just “irreducible”) if f(x) cannot be written as a
product of two polynomials of smaller degree in F [x].

Question: Let F be a field. What are the irreducible polynomials of degree one in F [x]? Can
you think of an irreducible polynomial of degree 2 in R[x]? What about C[x]?

Theorem: Let F be a field, and f(x) ∈ F [x] be a polynomial of degree 2 or 3. f(x) is reducible
over F [x] if and only if f(x) has a root in F .

Proof: If f(x) has a root a ∈ F , then x− a ∈ F [x] is a factor of f(x), so f(x) is reducible.

If f(x) is reducible, then f(x) = g(x)h(x) for some polynomials g, h ∈ F [x]. Because
deg(f) = deg(g) + deg(h), then at least one of g and h must have degree 1. Every
degree-one polynomial in a field has a root, so f has a root.

Question: What are all monic irreducible polynomials of degree 3 in Z3[x]?

Question: What are all the irreducible polynomials of degree 3 in R[x]? (hint: it might be
easier to answer the question “What are all the irreducible polynomials of degree n in
R[x], where n is odd?”)

The huge important result of today is next: a complete classification of which ideals in F [x]
are maximal (remember: we care about maximal ideals in F [x] because their quotients will be
fields). This classification will take two steps: first, we show that every ideal in F [x] is principal
(generated by a single element), then that the maximal ideals are exactly the ones generated
by an irreducible polynomial.



Definition: An integral domain R is a principal ideal domain if every ideal
I ⊆ R is principal. (remember: an ideal is principal if it is generated by a
single element)

Theorem: Let F be a field. F [x] is a principal ideal domain.

Proof: We already know that F [x] is an integral domain because F is an integral domain. Let
I ⊆ F [x] be an ideal. If I = {0}, then I = 〈0〉 which is a principal ideal. If I 6= {0}, then
I contains nonzero elements, so we can let f(x) ∈ I be an element of minimal degree. We
will show that 〈f(x)〉 = I.

Because f(x) ∈ I, it follows that 〈f(x)〉 ⊆ I. To prove that I ⊆ 〈f(x)〉, let g(x) ∈ I, and
by the division algorithm we have g(x) = f(x)q(x)+r(x), where r = 0 or deg(r) < deg(f).
But since r(x) = f(x)q(x) − g(x) is in I, and f(x) is an element of minimal degree, it
follows that r(x) = 0.

Theorem: Let F be a field, and f(x) ∈ F [x]. The ideal 〈f(x)〉 is maximal if and only if f(x)
is irreducible over F .

Proof: Suppose 〈f(x)〉 is maximal, and suppose f(x) = g(x)h(x). Then 〈f(x)〉 ⊆ 〈g(x)〉 ⊆
F [x], so by maximality of 〈f(x)〉, either 〈g(x)〉 = F [x] or 〈g(x)〉 = 〈f(x)〉. In the first
case, g(x) must have degree zero, so h(x) has the same degree as f(x). In the second
case, g(x) has the same degree as f(x), so h(x) has degree zero. We have proven that for
every factorization f(x) = g(x)h(x), either g(x) or h(x) has the same degree as f(x), so
therefore f(x) is irreducible.

Suppose f(x) is irreducible. Then to show that 〈f(x)〉 is maximal, suppose that 〈f(x)〉 ⊆
I ⊆ F [x]. Because F [x] is a principal ideal domain, I = 〈g(X)〉 for some g(x) ∈ F [x].
Then f(x) = g(x)q(x) for some q(x) ∈ F [x]. Because f(x) is irreducible, either g(x) or
q(x) is degree zero. In the first case, 〈g(x)〉 = I. In the second case, g(x) is a constant,
so 〈f(x)〉 = 〈g(x)〉.



Lecture 7: Unique Factorization of
Polynomials

We’re developing the ring theory we need to start studying field extensions. Two clases ago,
we saw an example of how to construct the field C as the quotient ring R[x]/〈x2 + 1〉. This
motivated the idea of enlarging a field F by taking the quotient of F [x] by a maximal ideal (the
resulting field will indeed contain F as a subfield, but we haven’t proved this yet).

So what are the maximal ideals of F [x]? Last class, we defined an irreducible polynomial in
F [x] as a polynomial which doesn’t factor as a product of polynomials of lesser degree (in other
words, the only factorizations are the stupid ones where one of the factors is a constant, like
x2 + 1 = (12)(2x2 + 2)). We learned that all ideals in F [x] are principal (generated by a single
element), and the maximal ideals are exactly the ones that are generated by an irreducible
polynomial. Therefore, whenever you have an irreducible polynomial f(x) ∈ F [x], the ring
F [x]/〈f(x)〉 will be a field.

Soon, we will see this new field will be one in which the original polynomial has roots (just
like how x2 + 1 has roots ±i in C ∼= R[x]/〈x2 + 1〉). Before we do this, let’s prove that all
polynomials factor uniquely into a product of irreducible polynomials. In this way, “irreducible
polynomials” are like the indivisible building blocks of all polynomials, just like how all prime
numbers are the indivisible building blocks of all integers.

Theorem (unique factorization): Let F be a field. Any polynomial f ∈ F [x] can be writ-
ten as a product p1p2 . . . pn of polynomials which are irreducible in F [x]. Moreover, if
q1q2 . . . qm is another way to write f as a product of polynomials which are irreducible in
F [x], then m = n and you can re-order the qi’s so that pi = qiui for units ui.

We’ll get to the proof soon, but here are some comments:

What’s the meaning of the condition about units? Consider the factorizations of x2−1
in R[x].

x2 − 1 = (x+ 1)(x− 1)

x2 − 1 = (
1

2
x+

1

2
)(2x− 2)

These are different ways to write x2−1 as a product of polynomials which are irreducible
in R[x], but they’re not different in a meaningful way – all we’ve done is multiply one
factor by two and divide the other factor by two. The theorem says that there’s only one
way to factor x2 − 1 if you ignore these superficially different ways to factor.

Isn’t this obvious? No. Consider the subring R of complex numbers consisting of elements
of the form a+ b

√
−5. In this ring, 21 can be factored in two very different ways:

21 = (7)(3)

21 = (1 + 2
√
−5)(1− 2

√
−5)

I am not going to define what it means for an element of R to be “irreducible,” so this
example is very vague. All I want for you to learn from it is that there are situations
where factorization happens differently than you’re used to in Z, and our proof of the
unique factorization theorem will use the fact that our ring is F [x], where F is a field (in
particular, we’ll use the fact that F [x] is a principal ideal domain). Before the proof, a
quick lemma.



Lemma: Let f(x) ∈ F [x] be an irreducible polynomial. If f(x) is a factor of p(x)q(x), where
p(x), q(x) ∈ F [x], then either f(x) is a factor of p(x) or of q(x).

Proof of Lemma: Let I = 〈f(x), p(x)〉. Because F [x] is a principal ideal domain, I = 〈r〉 for
some r ∈ F [x].

If r is a unit: Then there is some g, h so that gf + hp = 1, so qgf + qhp = q. Because
f is a factor of the left hand side, then f is a factor of q.

If r is not a unit: Then f = rz for some z, and because f is irreducible and r is not a
unit, z must be a unit. Then 〈f〉 = 〈r〉 = I. So f is a factor of p.

Example: The polynomial x2 + 1 ∈ R[x] is a factor of x6−x5 +x4−x2 +x− 1 (you can verify
this by long division), and

x6 − x5 + x4 − x2 + x− 1 = (x3 − x2 + x− 1)(x3 + 1)

so the lemma proves that either x2 +1 is a factor of x3−x2 +x−1 or is a factor of x3 +1.
Indeed, x3 − x2 + x− 1 = (x2 + 1)(x− 1).

Example: The polynomial x2 − 1 ∈ R[x] is a factor of itself, x2 − 1 = (x+ 1)(x− 1). But it is
not true that either x2 − 1 is a factor of x+ 1 or of x− 1. This shows that the condition
that f(x) is irreducible in the lemma is necessary.

Proof (of unique factorization): To prove the existence of a factorization, start with some
f(x) ∈ F [x]. If it is irreducible, we’re done. If it’s not, then f = p1p2, where p1 and p2
have smaller degree than f , but greater than 0. If both p1 and p2 are both irreducible
we’re done; otherwise we factor whichever of p1 and p2 are reducible. We continue this
process until all terms are irreducible (this process must terminate because the maximum
degree of the reducible terms in the product decreases in each step).

To prove the uniqueness (up to units), let p1p2 . . . pn and q1q2 . . . qm be irreducible fac-
torizations of f . Use induction: if n = 1, then f is irreducible and n = m and p1 = q1.
Assume the uniqueness statement is true for elements of F [x] with a factorization having
at most n − 1 elements. By the lemma, p1 is a factor of at least one of q1, q2, . . . , qm.
Re-order the elements so that p1 is a factor of q1. That is, up1 = q1 for some unit u (it
must be a unit because q1 is irreducible). Then

up1p2 . . . pn = uq1q2 . . . qm

But since up1 = q1, we can cancel the corresponding terms from the above equation

p2p3 . . . pn = (uq2)q3 . . . qm

and apply the inductive hypothesis, which tells us that the terms on the left and right are
the same (up to re-ordering and units). If you delete the u factor from uq2, it is still true
that the terms on the left and right are the same up to re-ordering and units; because p1
and q1 are also the same up to a unit, the inductive step follows.



Lecture 8: Fundamental Theorem of Field
Theory

We’re finally prepared to begin our systematic study of field extensions: the process of
taking one field and enlarging it into a new field. In a few weeks, we’ll see how field extensions
can help us study geometric constructions. The process of drawing lines and circles on a paper
with a straightedge and compass, and then intersecting these lines, can be translated into the
process of constructing larger fields from a smaller field. We’ll use field theory to solve problems
that stumped the (ancient) Greeks.

Definition: A subfield of a field F is a subring S of F which is itself a field.

Definition: A field E is an extension field of a field F if F is a subfield of E.

Warning: A lot of mathematicians will say things like “E contains F as a sub-
field” when they really mean “E contains a subfield isomorphic to F .” This
is imprecise, but I might do it too sometimes.

Examples: Q is a subfield of R, and R is a subfield of C. Said differently, R is an extension
field of Q, and C is an extension field of R.

Questions:

1. Can you think of any fields that contain C? (Watch out: the quaternions are not
commutative!)

2. Can you think of any fields between Q and R?

3. Can you think of any fields between Q and C that neither contain nor are contained
in R?

Important Comment: If E is an extension field of F , any polynomial f(x) ∈
F [x] is also an element of E[x]. In other words, if F is a subfield of E, then
F [x] is a subring of E[x].

Theorem: Let F be a field and f(x) be an irreducible polynomial in F [x]

1. F [x]/〈f(x)〉 is a field that contains a subfield isomorphic to F .

2. The polynomial f has a root in F [x]/〈f(x)〉.

The statement of the second part of this theorem can be confusing. In it, you should think of
f(x) as a function that you plug elements into and it spits out some output element. Don’t get
it confused with the element [f(x)] of the field F [x]/〈f(x)〉.

Proof:



(1): Because 〈f(x)〉 is a maximal ideal, F [x]/〈f(x)〉 is a field. Consider the map

ϕ : F → F [x]/〈f(x)〉
a 7→ [a].

This map is a homomorphism, because

ϕ(a+ b) = [a+ b] = [a] + [b] = ϕ(a) + ϕ(b)

ϕ(ab) = [ab] = [a][b] = ϕ(a)ϕ(b)

The kernel of this homomorphism is the ideal of all elements of F sent to the zero
coset, i.e. F ∩〈f(x)〉. But F ∩〈f(x)〉 = 0, so ϕ is injective. By the first isomorphism
theorem, im(ϕ) ∼= F .

(2): Suppose f(y) = a0 + a1y + · · · + any
n (originally, we used the variable x in the

polynomial f , but here I want you to think of f as a function and I don’t want you
to confuse the “input variable of f” with the element x in the polynomial ring F [x],
so I changed the name of the variable).

When we plug the element [x] ∈ F [x]/〈f(x)〉 into f , we get the following element of
F [x]/〈f(x)〉

[a0] + [a1][x] + [a2][x]2 + · · ·+ [an][x]n = [a0 + a1x+ a2x
2 + · · ·+ anx

n] = [0]

So [x] is a root of f .

Corollary (Fundamental Theorem of Field Theory): Let F be a field and f(x) be any
nonconstant polynomial in F [x]. Then there is an extension field E of F in which f(x)
has a root.

Proof: If f(x) has a root, then E = F . Otherwise, let f(x) = p1(x)p2(x) . . . pn(x) be a
factorization of f(x) into irreducible polynomials. For any 1 ≤ i ≤ n, the field F [x]/〈pi(x)〉
is a field extension of F for which pi(x) has a root. Therefore, f(x) also has a root in
F [x]/〈pi(x)〉.

Notation: Let E be a field extension of F , and let a1, . . . , an ∈ E. We write
F (a1, . . . , an) (sometimes called “F adjoint a1 through an”) is the smallest
subfield of E that contains both F and also the set {a1, . . . , an}.

Example: When E = R, F = Q and a =
√

2, the field Q(
√

2) is {a+ b
√

2 | a, b ∈ Q} ⊆ R.

Example: When E = C, F = Q and a = i, the field Q(i) is {a+ bi | a, b ∈ Q} ⊆ C. This field
is an extension of Q and a subfield of C.

Example/Question: When E = C, F = Q and a1 =
√

2, a2 =
√

5, the field Q(
√

2,
√

5) is not
equal to {a+ b

√
2 + c

√
5 | a, b, c ∈ Q} ⊆ R. Why not? Can you describe what it is equal

to?

Optional problems (don’t hand in):

1. For any a, b ∈ R with b 6= 0, show that R(a+ bi) = C.

2. Describe the field Q(π).

3. (Gallian, example 2) Find two different field extensions of Z3, one with 9 elements and
another with 27 elements, in which the polynomial f(x) = x5 + 2x2 + 2x+ 2 ∈ Z3[x]
has a root (hint: one factor of f(x) is x2 + 1).



Lecture 9: More on Field Extensions

Reminder of Last Class

Last class, we learned two ways to make a field F bigger.

Method 1: Start with an irreducible polynomial f(x) ∈ F [x] of degree ≥ 2, and construct the
field E = F [x]/〈f(x)〉. We learned two important facts about this field:

1. The cosets represented by constant polynomials are a subfield of E which is isomor-
phic to F (this is the sense in which we “made the field F bigger”).

2. The polynomial f has a root inside E, even though it doesn’t have one in F .

Method 2: Start with a field extension E of F , and a collection of elements {α1, . . . , αn} of
E. We defined the extension F (α1, . . . , αn) to be the smallest field that contains both F
and the elements {α1, . . . , αn}.

Today, we will learn a relationship between these constructions. Also, we will describe how to
measure the “size” of a field extension using the language of dimensions of vector spaces.

Relationship between F (α) and F [x]/〈f(x)〉

Theorem: Let E be a field extension of F , and let α ∈ E be a root of an irreducible polynomial
f(x) ∈ F [x]. Then

F (α) ∼= F [x]/〈f(x)〉

Proof: For a polynomial b0 + b1x+ · · ·+ bnx
n ∈ F [x], plugging α into p gives

b0 + b1α+ · · ·+ bnα
n

which is an element of F (α), since it is the sum of products of things in F (α). Consider
the map

ϕ : F [x]→ F (α)

p(x) 7→ p(α)

This is a ring homomorphism. Its kernel contains f(x), so 〈f(x)〉 ⊆ ker(ϕ) ⊆ F [x]. Since
〈f(x)〉 is maximal and ker(ϕ) 6= F [x], it must be the case that 〈f(x)〉 = ker(ϕ). By
the first isomorphism theorem, im(ϕ) ∼= F [x]/〈f(x)〉, which shows that im(ϕ) is a field.
Because the image is a field containing both F and α, it must be the entire field F (α).
By the first isomorphism theorem, F [x]/〈f(x)〉 ∼= F (α).

In the past, we’ve seen how every element of F [x]/〈f(x)〉 can be represented by a polynomial
of degree < deg(f). Let’s revisit this result in the context of field extensions.

Theorem: Let E be a field extension of F , and f(x) be an irreducible polynomial in F [x] of
degree n that has a root α ∈ E. Every element of F [x]/〈f(x)〉 has a unique representative
of the form b0 + b1x + · · · + bn−1x

n−1, and every element of F (α) can be written as
b0 + b1α+ · · ·+ bn−1α

n−1 in a unique way (in both cases, the bi’s are elements of F ).



Proof: Consider [p(x)] ∈ F [x]/〈f(x)〉. By the long division theorem, there are unique q(x), r(x) ∈
F [x] with

p(x) = f(x)q(x) + r(x)

and deg(r(x)) < n. Because f(x)q(x) ∈ 〈f(x)〉, it follows that [p(x)] = [r(x)]. By the
“uniqueness” part of the long division theorem, this r(x) is unique. The isomorphism
between F [x]/〈f(x)〉 and F (α) constructed in the previous proof sends this coset to r(α).

Besides giving us an intuitive description of F [x]/〈f(x)〉 and F (α), this result also sheds light
on an interesting feature of this kind of field extension: depending on the degree of f(x), you
might need more (or fewer) powers of α to express every element of F (α). For example, if the
degree of the irreducible polynomial is 2, everything in F (α) can be written as a combination of
1 and α. If the degree is 3, we need 1, α and α2. In general, the number of different powers of α
necessary to represent all elements of F (α) is equal to the degree of the irreducible polynomial
it satisfies. In other words, the elements {1, α, α2, . . . , αn−1} are a basis for the vector space
F (α) over F , and we can measure the “size” of a field extension E of F as the dimension of E
as a vector space over F . Let’s review some abstract linear algebra.

Reminder of Abstract Linear Algebra

Definition/Reminder: A vector space over a field F is a set V with two
operations: vector addition v1 + v2 and scalar multiplication kv1 (where
v1, v2 ∈ V and k ∈ F ) that satisfy the following properties:

• (V,+) is an abelian group.

• Multiplication distributes with the addition operations in V and F :

(k1 + k2)v = k1v + k2v

k(v1 + v2) = kv1 + kv2

• Associativity: (k1k2)v = k1(k2v).

• Scalar multiplication by 1 ∈ F is the identity: 1v = v

In your linear algebra class, you probably studied the vector spaces Rn and Cn so much that
you might have forgotten the abstract definition of vector spaces and started thinking of them
as “things isomorphic to Rn or Cn”.

Definition/Reminder: Vectors v1, . . . , vn in V are linearly independent if
whenever k1v1 + k2v2 + · · · + knvn = 0 for some k1, . . . , kn ∈ F , then
k1 = k2 = · · · = kn = 0.

Definition/Reminder: A basis for V is a linearly independent subset B of
V with the property that every element of V can be written as a linear
combination of elements of B (that is, as k1b1 + k2b2 + · · · + knbn, where
the ki’s are in F and bi’s are in B).

Definition/Reminder: The dimension of V is the number of elements of a
basis of B. (fact: every basis of a vector space has the same number of
elements, so this definition makes sense).



Example: The set V = Rn is a vector space over the field R. We add vectors by

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

and multiply by scalars k ∈ R by elements of V according to the rule

k(a1, . . . , an) = (ka1, . . . , kan)

A basis for V over R is

e1 = (1, 0, . . . , 0)

e2 = (0, 1, . . . , 0)

...

en = (0, 0, . . . , 1)

Example: The set V of all polynomials in R[x] with degree ≤ 2 is a vector space over R. We
add vectors by standard polynomial addition, and multiply elements of R by elements of
V according to the rule

k(a0 + a1x+ a2x
2) = ka0 + ka1x+ ka2x

2

A basis for V over R is

e1 = 1

e2 = x

e3 = x2

Example: The set C of all complex numbers is a vector space over R using the standard
addition of complex numbers, and the standard multiplication of a complex number by a
real number. A basis for V over R is

e1 = 1

e2 = i

Example: The set R of all real numbers is a vector space over Q using the standard addition
of real numbers, and the standard multiplication of a real number by a rational number.
A basis for R as a vector space over Q is infinite; its construction also requires the axiom
of choice.

In many of the examples above, we view a field as a vector space over a subfield of itself.
More preciely, if E is a field extension of F (so F is a subfield of E), we can view E as a vector
space over F in the following way:

• The addition rule for elements of the vector space E is the same as the addition rule in
the field E

• The multiplication of an element of F with an element of E is the same as the multipli-
cation rule inside E (because elements of F are also in E, this makes sense)

Degree of a Field Extension



Definition: Let E be a field extension of F . We say that E has degree n over
F if the dimension of E over F (as a vector space) is equal to n. In this
case, we write

[E : F ] = n

If [E : F ] is finite, we say E is a finite extension of F . Otherwise, we say
that E is an infinite extension of F .

Example: Referring to the examples above,

• [C : C] = 1

• [C : R] = 2

• R is an infinite extension of Q
• [Q(21/3) : Q] = 3

Optional problems: 1. The polynomial x3 + 9x + 6 ∈ Q[x] is irreducible. It has a root
α ∈ R. Calculate the inverse of 1 + α in the ring Q(α) (your answer should be some
linear combination of powers of α).

2. The polynomial x3 − 2x− 2 ∈ Q[x] is irreducible. Let α be a root of it in some field
extension. Compute (1 + α)(1 + α + α2) and 1+α

1+α+α2 in Q(α) (as in the previous
problem, your answers should be some linear combination of powers of α).



Lecture 10: Eisenstein’s criterion and
adjoining multiple elements

Let F be a field. So far, we’ve discussed two ways of constructing field extensions of F .
First, if you have an irreducible polynomial f(x) ∈ F [x], the field F [x]/〈f(x)〉 is an extension
of F . Second, if α is an element of a field extension E of F , then F (α) is defined to be the
smallest subfield of E containing both F and α.

These two constructions are related to each other when f(x) is an irreducible polynomial
having α as a root. In this case, we proved that the two field extensions described above are
actually isomorphic. Moreover, we can actually use the isomorphism between them to describe
the elements of F (α): they are F -linear combinations of the elements {1, α, α2, . . . , αn−1},
where n is the degree of the irreducible polynomial. This observation motivated the definition
of the degree of a field extension as the dimension of the larger field when viewed as a vector
space over the smaller field.

We’re almost ready to apply everything we’ve learned to the topic of geometric constructions.
There are only two more topics that need to be covered. First of all, we are going to be studying
extensions of Q a lot, and for that it will be helpful to have ways to determine when a polynomial
in Q[x] is irreducible. Next, we need to understand the structure of field extensions obtained
by adjoining multiple elements to a field, not just one.

Eisenstein’s Criterion

Theorem (Eisenstein’s criterion): A polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x].

is irreducible as an element of Q[x] if there is a prime number p ∈ Z such that the following
three conditions are satisfied.

• p divides each of of an−1, an−1, . . . , a0

• p does not divide an

• p2 does not divide a0

Proof: I won’t prove this, because it would take an entire 2-hour lecture of learning about
irreducibility for polynomials whose coefficients aren’t fields, and we have much more
exciting ways to spend our time!

Example 1: The polynomial 2x5 + 6x3 + 300x2 − 9x+ 6 satisfies the three criteria for p = 3,
so it is irreducible as a polynomial in Q[x]. (note: the coefficient “0” of x4 is divisible by
3)

Remark 1: Notice that to apply Eisenstein’s criteria, the coefficients must be in Z, but the
result is about irreducibility in Q[x]. This isn’t a typo.

Remark 2: The converse of Eisenstein isn’t true. For example, the polynomial x2 + 1 is
irreducible as an element of Q[x] even though you can’t find any primes p for which
Eisenstein’s criteria apply.

Question: Can you apply Eisenstein’s criteria to the polynomial x6 + 30x5− 15x3 + 6x− 120?

Question: Can you apply Eisenstein’s criteria to the polynomial x4 + 30x2 + 6x− 36?



Adjoining multiple elements to a field

Remember that if E is an extension of F , and α1, . . . , αn ∈ E, the field F (α1, . . . , αn) is
defined to be the smallest subfield of E that contains F and each αi. We have a complete
understanding of the structure of F (α) when α is the root of an irreducible polynomial in F .
What if you adjoin more than one element? The next result says that “Adjoining two elements
is the same as adjoining the elements one at a time”

Lemma: Let E be a field extension of F , and α, β ∈ E.

F (α, β) = (F (α))(β)

Proof: Because (F (α))(β) contains F, α, and β, and F (α, β) is defined to be the smallest
subfield of E containing F, α, and β, it follows that F (α, β) ⊆ (F (α))(β).

To show the other inclusion, first observe that F (α) is a subfield of F (α, β) (because
F (α, β) contains F and α, and F (α) is the smallest subfield of E containing F and α)

Therefore, F (α, β) contains both F (α) and β. But (F (α))(β) is the smallest subfield of
E containing F (α) and β, so (F (α))(β) ⊆ F (α, β).

Detailed example: Q(
√
3,
√
5)

The above theorem says that Q(
√

3,
√

5) = (Q(
√

5))(
√

3). Let’s remind ourselves what we
know about Q(

√
5).

• x2−5 ∈ Q[x] is an irreducible polynomial (by Eisenstein) having
√

5 as a root. Therefore,
Q(
√

5) ∼= Q[x]/〈x2 − 5〉.

• Q(
√

5) has basis {1,
√

5} as a vector space over Q

• Q(
√

5) consists of elements of the form {a+ b
√

5}, where a, b ∈ Q.

Next, we want to adjoin
√

3 to the field Q(
√

5) to get Q(
√

5,
√

3). If we knew that x2 − 3 is
an irreducible polynomial in Q(

√
5)[x], we could use the theorems from last week to describe

(Q(
√

5))(
√

3). But we can’t use Eisenstein to conclude that x2 − 3 ∈ Q(
√

5)[x] is irreducible,
because Eisenstein only applies to polynomials in Q[x], but we can use the irreducibility test
that says a polynomial of degree 2 or 3 is irreducible if and only if it has no roots.

To show x2−3 has no roots in Q(
√

5), assume towards a contradiction that it does: a+b
√

5
is a root of x2 − 3 for some a, b ∈ Q. That is,

a2 + 5b2 + 2ab
√

5 = 3

Case 1: If ab 6= 0, then
√

5 = (3− a2 + 5b2)/(2ab) would be a rational number, which it’s not.

Case 2: If a = 0, then 5b2 = 3, so
√

5b =
√

3, but multiplying through by
√

5 shows that
√

15
must be rational, which it’s not.

Case 3: If b = 0, then a =
√

3 would be a rational number, which it’s not.

So x2 − 3 ∈ Q(
√

5) is indeed an irreducible polynomial, so we can conclude

• Q(
√

5,
√

3) ∼= Q(
√

5)[x]/〈x2 − 3〉.

• Q(
√

5,
√

3) has basis {1,
√

3} as a vector space over Q(
√

5)



• Q(
√

5,
√

3) consists of elements of the form {a + b
√

3}, where a, b ∈ Q(
√

5). Because
these a, b are themselves of the form c+ d

√
5 for c, d ∈ Q, we can write every element of

Q(
√

5,
√

3) in the form k1 + k2
√

3 + k3
√

5 + k4
√

15, where each ki ∈ Q.

Degrees of field extensions multiply

Theorem: Let K be an extension of E with basis {α1, . . . , αn}, and E be an extension of F
with basis {β1, . . . , βk}. Then B = {αiβj | 1 ≤ i ≤ n, 1 ≤ j ≤ k} is a basis for K over F .

Proof: Let a ∈ K. Then
a = e1α1 + e2α2 + · · ·+ enαn

for e1, . . . , en ∈ E. Since each ei can be written as an F -linear combination of βj ’s, say∑
fijβj , we have

a = (f11β1 + f12β2 + · · ·+ f1kβk)α1+

(f21β1 + f22β2 + · · ·+ f2kβk)α2+

...

(fn1β1 + fn2β2 + · · ·+ fnkβk)αn.

by expanding the above expression, we have written a as a F -linear combination of ele-
ments of B. This proves that B spans K as a vector space over F .

It remains to show that there are no linear relations amongst the B’s. Suppose that∑
i,j

cijαiβj = 0

Then by grouping all the terms with the same i-value together, we can re-write this as

∑
i

∑
j

cijβj

αi = 0

But because the {αi} are linearly independent, this implies that each
∑

j cijβj is zero.
Then using the fact that the {βj} are linearly independent, this means that each cij equals
zero. This shows that the only F -linear combination of elements of B equal to zero is
the all-zero combination, which proves the linear indpendence of elements of B, which
complete the proof that B is a basis.

Corollary: If F ⊆ E ⊆ K are fields, then [K : F ] = [K : E][E : F ].

Proof: The number of elements in a basis for K as a vector space over F equals the product
of the number of elements of a basis for K as a vector space over E times the number of
elements of a basis for E as a vector space over F .

Example: We saw that [Q(
√

3,
√

5) : Q] = 4, and [Q(
√

3,
√

5) : Q(
√

3)] = 2 and [Q(
√

3) : Q] =
2 in the last example.

Application: Let E be a field extension of F of degree p, where p is a prime number. What
are the subfields of E containing F?

Application: Calculate [Q( 7
√

3, 17
√

5) : Q].



Lecture 11: Constructible Numbers

We’re finally ready for our second application of ring theory (the first was the Chinese
remainder theorem). This week, we’ll show how the theory of field extensions helps us solve
basic questions about plane geometry that stumped the Greeks. Suppose you have a collection
of points, lines, and circles on the plane R2, and you have a compass and straightedge. There
are three basic operations you can perform using these tools.

Compass and Straightedge Operations

1. Draw an (infinite) straight line between two points.

2. Set your compass radius to the distance between two points, and draw a
circle around a point. This third point may be the same as or may be
different from your original two.

3. Draw a point at the intersection of two circles, of two lines, or of a circle
and a line.

A natural question to ask is:

What kinds of more complicated operations can I perform by a sequence of
these basic operations?

For example, if you have two points that are a certain distance d apart, can you construct a
equilateral triangle with side lengths d? What about a square, pentagon, or hexagon? Can you
bisect angles? Trisect angles? Can you construct parallel lines? Perpendicular lines?

Constructibility

Recall: Start with two points on the plane R2 that are distance 1 apart. A point, line, or circle
on R2 is constructible if can be drawn in a finite number of steps using the operations
above. A real number k is constructible if there are two constructible points that are
distance |k| apart.

Let’s get a feel for constructible lines, points, circle, and numbers by seeing what we can draw
just by starting with two points of distance 1 apart.



Clearly, you can get a lot of lines and circles and points just from these simple operations.
Let’s be more systematic in our study of constructible numbers. What properties do they have?

Claim: If a and b are constructible numbers, then so is a+ b.

Proof: If either of a or b is zero, the claim is trivial. Otherwise, draw a line through the two
points p, q that are distance |a| apart, then a circle of length |b| around q. One of the
points where this circle intersects the line will be a distance of |a+ b| from p.

Claim: If a and b are constructible numbers, so is a− b

Proof: If b is constructible, then so is −b. So a+ (−b) is constructible.

As a consequence of all this, we know that every integer is constructible. We also want to show
that ab and a/b are constructible, but first we show two general tricks for constructions.

Claim: If p is a constructible point and L a constructible line, then the line through p perpen-
dicular to L is also constructible.

Proof:

Note that the above proof works even when p is on the line L.

Claim: If p is a constructible point and L a constructible line, then the line through p parallel
to L is also constructible.

Proof: (fill me in!)



Claim: If a, b ∈ R are constructible, then so is ab.

Proof: (fill me in!)

1 a− 1

b

1 a− 1

b

1 a− 1

b

Claim: If a, b ∈ R are constructible, then so is a/b.

Proof: (fill me in!)

1 b− 1

a

1 b− 1

a

1 b− 1

a

Theorem: The set of constructible numbers is a subfield of R.

Proof: We just need to show that it is a subring in which every nonzero element has an
inverse. The fact that it is a subring follows from the fact that it is closed under addition,
subtraction, and multiplication. The fact that every nonzero element is a unit follows
from the fact that 1 is constructible, and that 1/a is constructible if a is constructible.

We already know that there are some irrational constructible numbers (for example
√

2). The
next two give some other examples of constructible numbers.

Claim: If a > 0 is constructible, so is
√
a.

Proof: (fill me in!)



1 a 1 a 1 a

Claim: Let α be an angle. If cos(α) is constructible, then so is sin(α).

Proof: (fill me in!)

cos(α) cos(α) cos(α)



Lecture 12: Impossible Constructions

Today, we’ll prove that certain constructions are impossible with a straightedge and com-
pass. We will begin by describing a general procedure for taking any sequence of straightedge
and compass operations, and associating to it sequence of field extensions of Q – whenever we
draw a new point as one of our operations, we adjoin the x and y coordinates of the point. We
will show that these field extensions are always degree 2. However, some geometric construc-
tions, such as trisecting certain angles, necessitate constructing a field extension whose degree
is divisible by 3, which we will show cannot occur as a sequence of degree-2 extensions.

Let’s remind outselves of the equations for lines and circles in R2. Let F be a subfield of R.

Line: If (x1, y1) and (x2, y2) are two distinct points with x1, y1, x2, y2 ∈ F , then the line through
them is given by

L = {(y1 − y2)x+ (x2 − x1)y + y2x1 − x2y1 = 0}

If we simplify, we get

L = {ax+ by + c = 0} where a, b, c ∈ F

Circle: If d is the distance between (x1, y1) and (x2, y2), and (x3, y3) is a third point, with
x1, y1, x2, y2, x3, y3 ∈ F , then the circle through (x3, y3) of radius d is given by

C = {(x− x3)2 + (y − y3)2 = d2}

If we simplify (and use the fact that d2 ∈ F ), we get

C = {x2 + y2 + ax+ by + c = 0} where a, b, c ∈ F

Now let’s study what happens when we take lines or circles of this form and intersect them.
What extension field of F will the coordinates of these new points live in?

Intersecting Lines and Circles

Proposition: Let F be a subfield of R, and suppose

L1 = {a1x+ b1y + c1 = 0 | a1, b1, c1 ∈ F}
L2 = {a2x+ b2y + c2 = 0 | a2, b2, c2 ∈ F}.

intersect at a point (p, q). Then p, q ∈ F .

Proof: Solve one of the equations for y in terms of x, and then substitute it into the other
equation. This gives a linear polynomial with coefficients in F whose root equals p, so
p ∈ F .

Proposition: Let F be a subfield of R, and suppose

L = {a1x+ b1y + c1 = 0 | a1, b1, c1 ∈ F}
C = {x2 + y2 + a2x+ b2y + c2 = 0 | a2, b2, c2 ∈ F}

intersect in a point (p, q). Then either p, q ∈ F , or F (p, q) is a degree-2 field extension of
F .



Proof: First suppose b1 6= 0. Then solve the equation for L for y in terms of x, and then
substitute it into the equation for C. This shows that the x-coordinate of intersection, p,
is the root of a degree-2 polynomial with coefficients in F , so [F (p) : F ] is either 2 or 1.
Plugging p into the equation for L and shows that q ∈ F (p), so F (p, q) = F (p). If b1 = 0,
then repeat the proof above with the roles of x and y reversed.

Proposition: Let F be a subfield of R, and suppose

C1 = {x2 + y2 + a1x+ b1y + c1 = 0 | a1, b1, c1 ∈ F}
C2 = {x2 + y2 + a2x+ b2y + c2 = 0 | a2, b2, c2 ∈ F}

intersect in a point (p, q). Then either p, q ∈ F , or F (p, q) is a degree-2 field extension of
F .

Proof: By subtracting the equation for C2 from the one for C1, we see that (p, q) must be on
the line

(a1 − a2)x+ (b1 − b2)y + (c1 − c2) = 0

Then apply the previous proposition.

Associating field extensions to straightedge and compass operations

Suppose we start with a collection of points in R2 that have coordinates in Q. If we perform
a sequence of straightedge and compass operations on these points, we can construct a sequence
of field extensions of Q – every time you draw a point (p, q), adjoin p and q to the current field
F . By the above propositions, every time you draw a line or a circle, the equation for your
line or circle will have coefficients in your current field; by the above three propositions, any
point you draw at the intersection of these lines or circles will correspond to a field extension
of degree 1 or 2.

Trisecting the Angle is Impossible

When people say “It is impossible to trisect an angle using a straightedge and compass,”
they mean “There exist constructible angles θ for which θ/3 is not constructuble.”

Proposition: If an angle θ is constructible, then so are the numbers cos(θ) and sin(θ).

Proof: Suppose the angle is formed by the lines L1 and L2 meeting at the point p. be the
point at the angle. Draw a circle of radius 1 around p, and suppose it meets L2 at the
point q. The line perpendicular to L1 through q will intersect L1 at a point cos(θ) away
from p and sin(θ) away from q.

Proposition: The angle π/3 is constructible, but π/9 is not.

Proof: The fact that π/3 is constructible is easy: take two points of distance 1 apart, and
draw a circles of radius 1 around each of them.

The fact that π/6 is not constructible relies on a little-known trigonometric identity, the
triple angle formula:

cos(3θ) = 4cos3(θ)− 3cos(θ)

Applied to θ = π/9, this becomes

1/2 = 4(cos(π/9))3 − 3(cos(π/9))



So cos(π/9) is a root of the polynomial 4x3 − 3x − 1/2 ∈ Q[x], which is irreducible (we
will prove this afterwards). This means that [Q(cos(π/9)) : Q] = 3.

Now assume towards a contradiction that we can find a sequence of straightedge and
compass operations that constructed the angle π/9. Then we could construct the num-
ber cos(π/9), and the point (cos(π/9), 0) ∈ R2. This means that the sequence of field
extensions corresponding to these operations

Q ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn
has cos(π/9) ∈ Fn. But this is impossible, each extension has degree 2 and [Q(cos(π/9)) :
Q] = 3.

Constructing a regular 7-gon is impossible

Proposition: It is impossible to construct a regular 7-gon.

Proof: Assume towards a contradiction that is is possible to construct a regular 7-gon. The
interior angle of a 7-gon is 5π/7, so it is possible to construct the angle π− 5π/7 = 2π/7,
and therefore it is possible to construct cos(2π/7). A true fact about the number cos(2π/7)
(which we will not prove) is that it is a root of the polynomial

8x3 + 4x2 − 4x− 1 ∈ Q[x].

Using the same technique as in the last section, we can check that this polynomial has
no roots, so is irreducible. Therefore, [Q(cos(2π/7)) : Q] = 3, so cos(2π/7) cannot be
contained in any field extension obtained through straightedge and compass operations.

Squaring the circle is impossible

Definition: Let F be a field, and k be an element of an extension of F . If there is a polyno-
mial in F [x] that has k as a root, then k is called algebraic over F . Otherwise, k is
transcendental over F .

Some real numbers that are algebraic over Q include all rational numbers, as well as the nth

roots of any rational number. Some real numbers that are transcendental over Q include π, e, ea

(where a is any nonzero algebraic number). The set of real numbers which are algebraic over
Q is countable, so the set of real numbers which are transcendental over Q is uncountable. In
this sense, there are “more” transcendental numbers than real numbers.

Proposition: If α is transcendental over F , then F (α) has infinite degree over F .

Proof: Assume towards a contradiction that [F (α) : F ] is some finite number n. Then the set
{1, α, . . . , αn} has n+ 1 elements in it, so must have some equation of linear dependence

a01 + a1α+ a2α
2 + · · ·+ anα

n where a0, . . . , an ∈ F .
Then α is a root of the polynomial f(x) = a0 + a1x+ · · ·+ anx

n ∈ F [x], a contradiction
to the fact that α is transcendental.

We will use the fact (without proof) that π is transcendental in the next proposition.

Proposition: It is impossible to construct a square whose area equals the area of a circle of
radius 1.

Proof: If it were possible, we could construct a sequence of field extensions

Q ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn
such that Fn contains the number

√
π (this is the side length of a square with area π).

But then Fn contains the field Q(π), and [Q(π) : Q] is infinite. But [Fn : Q] is not infinite.



Lecture 13: Splitting Fields

We ended class last Wednesday with the definition of an algebraic element of a field exten-
sion: an element α of an extension of F is algebraic over F if it is a root of a polynomial in
F [x], and transcendental over F otherwise. Recall also that if α is algebraic, then [F (α) : F ]
is finite; if is it transcendental, then [F (α) : F ] = ∞. Some of the most well-understood field
extensions are the ones in which all the elements are algebraic.

Definition: A field extension E of F is algebraic if every element of E is algebraic over F .

Notice that if a field extension is has finite degree, then it must be algebraic. The converse
isn’t true, as you’ll see in the homework. There are three important ways of constructing
algebraic field extensions, only the first of which we’ve studied.

Important algebraic field extensions

Adjunction: Adjoin a single algebraic element α from an extension of F . Equiv-
alently, take an irreducible polynomial f(x) ∈ F [x] that has α as a root,
and take F [x]/〈f(x)〉.

Splitting Fields: Take any single polynomial f(x) ∈ F [x] and adjoin all its
roots to F .

Algebraic Closure: Adjoin all the roots of all the polynomials in F [x] to F .

So far we’ve only studied adjunction because I wanted to get to geometric constructions as soon
as possible, and we didn’t need splitting fields or algebraic closures for geometric constructions.
Now we need to go back and learn about these other two constructions today and tomorrow so
that we’ll be prepared to study Galois theory after the exam.

Splitting fields: definitions and examples

Definition: Let f(x) ∈ F [x]. An extension field E of F is called a splitting
field for f(x) over F if the following two conditions are satisfied:

1. f(x) factors into linear polynomials (“splits completely”) in E[x].

2. f(x) does not split completely in K[x] for any F ( K ( E.

Example: Q(
√

2) is a splitting field for x2− 2 over Q. Let’s check that the two conditions are
satisfied

1. The polynomial x2 − 2 splits as (x+
√

2)(x−
√

2) in Q(
√

2)[x].

2. Because Q(
√

2) is a degree-2 field extension of Q, there are no fields K for which
F ( K ( E, so the second condition is vacuously true.

Non-Example: Q( 3
√

2) is not a splitting field for x3−2 over Q. This is because the polynomial
x3−2 does not split in Q( 3

√
2)[x]. Certainly it has a root 2

√
2, and therefore it has a linear

factor, (x− 3
√

2), but if we divide by this linear factor, we find that

x3 − 2 = (x− 3
√

2)(x2 +
3
√

2x+ (
3
√

2)2)



and that the second factor in the above decomposition is irreducible in Q( 3
√

2) (the roots
of it are complex, and everything in Q( 3

√
2) is real).

The second example raises the question: What is a splitting field for Q( 3
√

2) over Q? Well, we
could take Q( 3

√
2) and adjoin a root of (x2+ 3

√
2x+( 3

√
2)2) (or, equivalently, take Q( 3

√
2)[x]/〈(x2+

3
√

2x+ ( 3
√

2)2)〉). This idea of “keep adding roots of irreducible factors” is the core idea in the
proof that every polynomial has a splitting field.

Proposition: For any field F and any f(x) ∈ F [x], there is an extension E of F which is a
splitting field for f(x) over F .

Proof: Let f(x) = p1(x)p2(x) . . . pk(x) be the irreducible decomposition of f(x). If each pi
is linear, then f(x) already splits completely in F [x] and F is itself a splitting field for
f(x) over F . Otherwise, let pi(x) be a non-linear irreducible factor of f(x), and let
F1 = F [x]/〈pi(x)〉. Then F1 is a field extension of F in which pi(x) has a root α1,
so f(x) has more linear terms in F1[x] than in F [x]. If f(x) ∈ F1[x] still does not
completely split, then we repeat the process. Eventually, f(x) will split in Fk[x], where
Fk = F (α1, α2, . . . , αk) for roots αi.

Example: To form a splitting field for x3 − 2 over Q, the first step is to adjoin α1 = 3
√

2 to
get the extension Q( 3

√
2). In Q( 3

√
2)[x], the polynomial x3 − 2 factors as

x3 − 2 = (x− 3
√

2)(x2 +
3
√

2x+ (
3
√

2)2)

so we can adjoin a root of the non-linear term, α2 = 3
√

2(−12 +
√
3
2 i). Then the polynomial

splits in

F (
3
√

2,
3
√

2(
−1

2
+

√
3

2
i))

We can slightly simplify the above description of the splitting field by noticing that it’s
equal to

F (
3
√

2,
√

3i)

Example: The splitting field for (x2− 3)(x2− 5) is the field Q(
√

3,
√

5). We saw that this has
degree 4 over Q earlier in the course (Oct. 15).

Example: The polynomial x4 + 4 ∈ Q[x] has irreducible factorization

x4 + 4 = (x2 + 2x+ 2)(x2 − 2x+ 2)

The roots of the first factor in C are −1 + i and −1− i, and the roots of the second factor
are 1 + i and 1− i. Adjoining all these roots to Q is the same as Q(i). The splitting field
for x4 + 4 over Q is Q(i).

Splitting fields are unique up to isomorphism

In the definition of a splitting field, it is not clear how many splitting fields there are for a single
fixed polynomial over a single fixed field. In this section, we prove that any two such splitting
fields are isomorphic.



Observation: If ϕ : F → F ′ is a homomorphism, then

F [x]→ F ′[x]

a0 + a1x+ a2x
2 + . . . 7→ ϕ(a0) + ϕ(a1)x+ ϕ(a2)x

2 + . . .

is a homomorphism of rings. We will call this homomorphism ϕ also (sorry, I know it’s
confusing, but this is common notation in maths). If ϕ : F → F ′ is an isomorphism, then
the corresponding homomorphism ϕ : F [x]→ F ′[x] is also an isomorphism, and sends the
ideal 〈f(x)〉 to the ideal 〈ϕ(f(x))〉.

Proposition: Let ϕ : F → F ′ be an isomorphism, and f(x) be an irreducible polynomial in
F [x]. If α is a root of f in some extension of F , and β is a root of ϕ(f(x)) in some
extension of F ′, then there is an isomorphism ϕ̃ : F (α)→ F ′(β) such that ϕ̃(α) = β, and
ϕ̃
∣∣
F

= ϕ.

Proof: Because f(x) is irreducible, ϕ(f(x)) is irreducible too. Because ϕ sends 〈f(x)〉 to
〈ϕ(f(x))〉, the map F [x] 7→ F ′[x]/〈ϕ(f(x))〉 will have kernel equal to 〈f(x)〉, so we have
an isomorphism

F [x]

〈f(x)〉
→ F ′[x]

〈ϕ(f(x))〉
that sends a coset [q(x)] to [ϕ(q(x))]. The composition of isomorphisms

F (α)→ F [x]

〈f(x)〉
→ F ′[x]

〈ϕ(f(x))〉
→ F ′(β)

gives the desired isomorphism.

Theorem: Let ϕ : F → F ′ be an isomorphism, and f(x) be any polynomial in F [x]. If E is a
splitting field for f(x) in F , and E′ is a splitting field for ϕ(f(x)) in F ′, then there is an
isomorphism ϕ̃ : E → E′ such that ϕ̃

∣∣
F

= ϕ.

Proof: Let p(x) be an irreducible factor of f(x) of degree ≥ 2. Let α1 ∈ E be a root for p(x)
and β1 ∈ E′ be root for ϕ(p(x)). By the previous proposition, there is an isomorphism
F (α1)→ F ′(β1) that restricts to ϕ on F . If we repeat this process (until f(x) no longer
has any irreducible factors of degree ≥ 2, then we have a isomorphism F (α1, . . . , αk) →
F ′(β1, . . . , βk) that restricts to ϕ on F . Because f(x) splits in F (α1, . . . , αk), and ϕ(f(x))
splits in F ′(β1, . . . , βk), we have E = F (α1, . . . , αk) and E′ = F ′(β1, . . . , βk), which
completes the proof.

Corollary: Let F be a field, and f(x) ∈ F [x]. Any two splitting fields for f(x) over F are
isomorphic.

Proof: Apply the previous theorem to the case when F ′ = F and ϕ is the identity map.

Practice problems: Determine the splitting field over Q and their degrees over Q of the
following polynomials

• x4 − 2 ∈ Q[x]

• x4 + 2 ∈ Q[x]

• x4 + x2 + 1 ∈ Q[x]



Lecture 14: Algebraic Extension and
Characteristic of a Field

Last time we discussed the existence of splitting fields of a polynomial. Today, we’ll prove
that every splitting field is unique, then we’ll talk about algebraic closures and the characteristic
of a field.

Splitting fields are unique up to isomorphism

In the definition of a splitting field, it is not clear how many splitting fields there are for a single
fixed polynomial over a single fixed field. In this section, we prove that any two such splitting
fields are isomorphic.

Observation: If ϕ : F → F ′ is a homomorphism, then

F [x]→ F ′[x]

a0 + a1x+ a2x
2 + . . . 7→ ϕ(a0) + ϕ(a1)x+ ϕ(a2)x

2 + . . .

is a homomorphism of rings. We will call this homomorphism ϕ also (sorry, I know it’s
confusing, but this is common notation in maths). If ϕ : F → F ′ is an isomorphism, then
the corresponding homomorphism ϕ : F [x]→ F ′[x] is also an isomorphism, and sends the
ideal 〈f(x)〉 to the ideal 〈ϕ(f(x))〉.

Proposition: Let ϕ : F → F ′ be an isomorphism, and f(x) be an irreducible polynomial in
F [x]. If α is a root of f in some extension of F , and β is a root of ϕ(f(x)) in some
extension of F ′, then there is an isomorphism ϕ̃ : F (α)→ F ′(β) such that ϕ̃(α) = β, and
ϕ̃
∣∣
F

= ϕ.

Proof: Because f(x) is irreducible, ϕ(f(x)) is irreducible too. Because ϕ sends 〈f(x)〉 to
〈ϕ(f(x))〉, the map F [x] 7→ F ′[x]/〈ϕ(f(x))〉 will have kernel equal to 〈f(x)〉, so we have
an isomorphism

F [x]

〈f(x)〉
→ F ′[x]

〈ϕ(f(x))〉
that sends a coset [q(x)] to [ϕ(q(x))]. The composition of isomorphisms

F (α)→ F [x]

〈f(x)〉
→ F ′[x]

〈ϕ(f(x))〉
→ F ′(β)

gives the desired isomorphism.

Example: We can apply the above proposition to the identity isomorphism Q→ Q, the poly-
nomial f(x) = x3 − 2 ∈ Q[x], and the roots α = 3

√
2 ∈ R and β = ξ 3

√
2 ∈ C, where

ξ = e2πi3.

The isomorphism ϕ̃ from

Q(α) = Q(
3
√

2) = {a0 + a1
3
√

2 + a2(
3
√

2)2 | ai ∈ Q}

to
Q(β) = Q(ξ

3
√

2) = {b0 + b1ξ
3
√

2 + b2(ξ
3
√

2)2 | bi ∈ Q}



is the identity on Q and sends 3
√

2 to ξ 3
√

2, so by the properties of homomorphisms it
sends

a0 + a1
3
√

2 + a2(
3
√

2)2 7→ a0 + a1ξ
3
√

2 + a2(ξ
3
√

2)2

Notice also that the irreducible factorization of f(x) in Q( 3
√

2) is given by

f(x) = (x− 3
√

2)(x2 − 3
√

2x+ (
3
√

2)2)

while the irreducible factorization of f(x) in Q(ξ 3
√

2) is given by

f(x) = (x− ξ 3
√

2)(x2 − ξ 3
√

2x+ (ξ
3
√

2)2)

If we wanted to, we could apply the proposition again, applied to the isomorphism ϕ̃ :
Q( 3
√

2)→ Q(ξ 3
√

2) and the polynomial (x2 − 3
√

2x+ ( 3
√

2)2). The proposition would give
us new field extensions of Q( 3

√
2) and Q(ξ 3

√
2), and an isomorphism between these two

extensions that agrees with ϕ̃ (and therefore equals the identity on Q). This logic is the
key idea in the proof that splitting fields are unique.

Theorem: Let ϕ : F → F ′ be an isomorphism, and f(x) be any polynomial in F [x]. If E is a
splitting field for f(x) in F , and E′ is a splitting field for ϕ(f(x)) in F ′, then there is an
isomorphism ϕ̃ : E → E′ such that ϕ̃

∣∣
F

= ϕ.

Proof: Let p(x) be an irreducible factor of f(x) of degree ≥ 2. Let α1 ∈ E be a root for p(x)
and β1 ∈ E′ be root for ϕ(p(x)). By the previous proposition, there is an isomorphism
F (α1)→ F ′(β1) that restricts to ϕ on F . If we repeat this process (until f(x) no longer
has any irreducible factors of degree ≥ 2, then we have a isomorphism F (α1, . . . , αk) →
F ′(β1, . . . , βk) that restricts to ϕ on F . Because f(x) splits in F (α1, . . . , αk), and ϕ(f(x))
splits in F ′(β1, . . . , βk), we have E = F (α1, . . . , αk) and E′ = F ′(β1, . . . , βk), which
completes the proof.

Corollary: Let F be a field, and f(x) ∈ F [x]. Any two splitting fields for f(x) over F are
isomorphic.

Proof: Apply the previous theorem to the case when F ′ = F and ϕ is the identity map.

Algebraic Extensions

Recall that all finite fields are algebraic. Remember that whenever we adjoin a root of an
irreducible polynomial to a field, the extension has degree equal to the degree of the polynomial,
so this extension is algebraic. Also, since the construction of a splitting field consists of adjoining
a finite number of elements to a field, this extension will also be finite and hence algebraic.

Proposition: Let F ⊆ E and E ⊆ K be algebraic field extensions. Then F ⊆ K is an algebraic
field extension.

Proof: It suffices to prove that [F (α) : F ] <∞ for every α ∈ K. Since α is algebraic over E,
it is the root of some polynomial e0 + e1x+ · · ·+ enx

n, where ei ∈ E. Then

[F (α, e0, e1, . . . , en) : F ] = [F (α, e0, e1, . . . , en) : F (e0, e1, . . . , en)][F (e0, e1, . . . , en) : F ]

and both terms on the right are finite (the first because α is algebraic over F (e0, . . . , en),
the second because each ei is algebraic over F ), so the term on the left is finite. Since
F (α) is a subfield of F (α, e0, . . . , en), it must have finite degree over F also.



Corollary: Let E be a field extension of F . If a, b ∈ E are algebraic over F , then so are
a + b, a − b, ab, and a/b (assuming b 6= 0). Hence the set of elements of E that are
algebraic over F is a field.

Proof: Because F (a, b) = F (a)(b) has finite degree over F (by the previous proposition), then
the subfields F (a+ b), F (a− b), F (ab), F (a/b) of F (a, b) must also have finite degree over
F , hence be algebraic extensions. Therefore, the elements a+ b, a− b, ab, and a/b must
all be algebraic over F .

Definition: Let E be a field extension of F . The algebraic closure of F in E
is the subfield of E consisting of all elements of E that are algebraic over
F . It is an algebraic extension of F .

Characteristic of a Field

Many of the fields that we study are subfields of R or C and definitely have infinitely many
elements, while other fields we study like Z5 or Z2/〈x2 + x + 1〉 definitely have finitely many
elements. There are some fields, such as the field of fractions of Z5[x], that have infinitely many
elements, but still sort of share many similarities with finite fields, like the property that if you
keep adding an element to itself, you’ll eventually get zero. The definition of the characteristic
of a field helps distinguish, conceptually, between “infinite fields that really behave like infinite
fields” and “fields that may or may not be finite, but in some ways behave like finite fields.”

Definition: The characteristic of a field is the smallest positive number n such
that 1 + 1 + · · · + 1 = 0, where there are n copies of 1 written. If no such
number exists (for example, in Q) then the characteristic is zero.

Claim: The characteristic of a field is either zero or a prime number.

Proof: If the characteristic were composite, say n = ab, then the product of (1 + 1 + · · ·+ 1)
(written a times) with (1 + 1 + · · ·+ 1) (written b times) would be zero. Since fields have
no zero divisors, and n is defined to be the smallest positive integer such that n copies of
1 added together equals zero, this gives the contradiction.



Lecture 15: The Galois Group

Today, we’re beginning the final third of the course, which studies automorphisms of fields.

Definition: An automorphism of a ring R is an isomorphism from R to itself.

Definition: If E is a field extension of F , an F -automorphism of E is an
automorphism of E that fixes F . In other words, ϕ(a) = a for all a ∈ F .
The Galois group Gal(F/E) is the group whose elements are the F -
automorphisms of E, and whose group operation is composition of auto-
morphisms.

Ultimately, studying field automorphisms will show us that some quintic (degree 5) poly-
nomials in Q[x] have roots that cannot be expressed using radicals (i.e. square roots or cube
roots, or fourth roots, etc.). In other words, some quintics are “not solvable by radicals”. The
idea is similar to the proof that certain geometric straightedge-and-compass constructions are
impossible. In those proofs, we associated a sequence of field extensions to a geometric con-
struction, and by studying the degree of these extensions, we proved that certain constructions
are impossible. To prove that certain quintics are not solvable by radicals, we will associate field
extensions to the process of “solving something with radicals”, and by studying automorphisms
of these extensions, we can show that certain polynomials cannot be solved by radicals. Today,
we’ll just do lots of examples.

Example: Describe the Galois group Gal(Q(
√

2)/Q).

Remember that all elements of Q(
√

2) can be written in the form a+b
√

2, where a, b ∈ Q.
Using the fact that any Q-automorphism ϕ of Q(

√
2) must send every element of Q to

itself, and properties of homomorphisms, we see that

ϕ(a+ b
√

2) = ϕ(a) + ϕ(b)ϕ(
√

2) = a+ bϕ(
√

2).

So knowing what ϕ does to
√

2 tells us what ϕ does to every element. But ϕ(
√

2) can’t
be just any element of Q(

√
2): notice that

ϕ(
√

2
√

2− 2) = ϕ(
√

2)ϕ(
√

2)− ϕ(2) = ϕ(
√

2)2 − 2

and
ϕ(
√

2
√

2− 2) = ϕ(0) = 0.

This means that ϕ(
√

2) must be a root of the equation x2 − 2, so ϕ(
√

2) is
√

2 or −
√

2.

Therefore, the only possible Q-automorphisms of Q(
√

2) are

id : Q(
√

2)→ Q(
√

2)

a+ b
√

2 7→ a+ b
√

2

and

τ : Q(
√

2)→ Q(
√

2)

a+ b
√

2 7→ a− b
√

2



It’s straightforward to verify that both of these are indeed Q-automorphisms, and that
τ ◦ τ = id. Therefore, Gal(Q(

√
2)/Q) consists of two elements id and τ , with group

operation given by id · τ = τ · id = τ , and id · id = τ · τ = id.

Two things that helped us determine the splitting field in the above case. The first was that
the whole automorphism was determined by where

√
2 was sent. And the second was that

√
2

could only get sent to
√

2 or −
√

2, which are the roots of x2−2. These properties are formalized
in the next two propositions.

Proposition: Let α1, . . . , αn be algebraic over F . An F -automorphism of F (α1, α2, . . . , αn)
is completely determined by where it sends α1, . . . , αn. In other words, if ϕ and ψ are
two F -automorphisms such that ϕ(αi) = ψ(αi) for all i, then ϕ and ψ are the same
F -automorphism.

Proof: Recall that the field F (α1, . . . , αn) is spanned (as a vector space) over F by elements
of the form

αk11 α
k2
2 . . . αknn

If you write an element in terms of this basis and apply the properties of homomorphisms
and the fact that any F -automorphism must take every element of F to itself, you learn
that the image of an F -automorphism is determined by the elements ϕ(αi).

Proposition: Let E be an extension of F and f(x) ∈ F [x]. Any F -automorphism ϕ of E will
send roots of f(x) to other roots of f(x).

Proof: Suppose f(x) = a0 + a1x+ · · ·+ anx
n, where ai ∈ F . If f(α) = 0, then

f(ϕ(α)) = a0 + a1ϕ(α) + a2ϕ(α)2 + · · ·+ anϕ(α)n

= ϕ(a0) + ϕ(a1)ϕ(α) + ϕ(a2)ϕ(α)2 + · · ·+ ϕ(an)ϕ(α)n

= ϕ(a0) + ϕ(a1)ϕ(α) + ϕ(a2)ϕ(α2) + · · ·+ ϕ(an)ϕ(αn)

= ϕ(a0) + ϕ(a1α) + ϕ(a2α
2) + · · ·+ ϕ(anα

n)

= ϕ(a0 + a1α+ a2α
2 + · · ·+ anα

n)

= ϕ(0)

= 0



Example: Describe the Galois group Gal(Q( 3
√

2)/Q).

Fill in the blanks! What information do you need to describe the a Q-automorphism ϕ
of Q( 3

√
2) completely?

What could ϕ( 3
√

2) possibly be?

List all elements of Gal(Q( 3
√

2)/Q)

In the previous example, we saw that the Galois group was very small because the other roots
of x3 − 2 were not contained in the field Q( 3

√
2), so there was nowhere that a Q-automorphism

could send 3
√

2 except to 3
√

2 itself! In the next example, we’ll see that the Galois group is much
bigger if we take the splitting field of x3 − 2, so that all the roots of x3 − 2 are available as
images of 3

√
2.

Example: Let E be the splitting field for x3−2 over Q. Describe the Galois group Gal(E/Q).

Let ξ = e
2πi
3 , and recall that the splitting field for x3 − 2 can be obtained by adjoining

the roots of x3 − 2 to Q, so E = Q( 3
√

2, 3
√

2ξ, 3
√

2ξ2). Equivalently, E = Q( 3
√

2, ξ). What
information do you need to describe the a Q-automorphism ϕ of E completely?

What could ϕ( 3
√

2) possibly be? What could ϕ(ξ) possibly be?

List all elements of Gal(E/Q)



In the above example, we used the fact that the element ξ is a root of the polynomial
x2 +x+ 1 to help determine its possible images under Q-automorphisms of E. In any algebraic
field extension, every element α of the larger field is the root of some polynomial with coefficients
in the smaller field. In fact, there will be a unique monic irreducible polynomial for which α is
a root.

Proposition: Let α be algebraic over F . There is a unique monic irreducible polynomial in
F [x] for which α is a root.

Proof: Let I ⊆ F [x] be the ideal of polynomials for which α is a root. Because F [x] is a
principal ideal domain, I = 〈p(x)〉 for some polynomial p(x), which must be irreducible
(otherwise one of its irreducible factors would have α as a root, but this factor would
not be in 〈p(x)〉 = I, a contradiction). By dividing p(x) by its leading coefficient, we
may assume that p(x) is monic. Every polynomial that has α as a root is a multiple of
p(x), so either must be reducible or must not be monic, so p(x) is the unique irreducible
polynomial having α as a root.

Definition: Let α be algebraic over F . The minimal polynomial of α over
F is the unique monic irreducible polynomial in F [x] having α as a root.

Example: Describe the Galois group Gal(Q(
√

2,
√

3)/Q).

Fill in the blanks! What information do you need to describe the a Q-automorphism ϕ
of E completely?

What could ϕ(
√

2) possibly be? What could ϕ(
√

3) possibly be?

List all elements of Gal(E/Q)

Practice problems: .

1. Describe the Galois group of the splitting field of x4 + 1 over Q.

2. Describe the Galois group of the splitting field of x2 + 9 over Q.

3. Describe the Galois group of the splitting field of x2 − 10x+ 21 over Q.



Lecture 16: The Fundamental Theorem of
Galois Theory

Last Wednesday we defined the concept of a Galois group, and studied two examples of
Galois groups. Today, we’ll learn the Fundamental theorem of Galois theory, which describes a
bijection between subfields of certain field extensions and the subgroups of the corresponding
Galois group. To motivate it, we begin by revisiting an example from last Wednesday.

Example

Let E be the splitting field for x3 − 2 over Q. We saw last week that E = Q( 3
√

2, ξ), where

ξ = e
2πi
3 , and that every Q-automorphism of E could be described by where it sent 3

√
2 and ξ,

and that the only places where 3
√

2 could be sent are roots of x3 − 2, and that the only places
where ξ could be sent are roots of x2 +x+ 1. This logic produced the following list of elements
of Gal(E/Q). Fill in the blanks!

id :

{
ξ 7→ ξ

3
√

2 7→ 3
√

2
τ :

{
ξ 7→ ξ2

3
√

2 7→ 3
√

2

σ :

{
ξ 7→ ξ

3
√

2 7→ ξ 3
√

2
σ2 :

{
ξ 7→
3
√

2 7→

τσ :

{
ξ 7→
3
√

2 7→ τσ2 :

{
ξ 7→
3
√

2 7→

Draw a lattice for the subfields of E and a lattice for the subgroups of Gal(E/F ).



The lattices look similar, but upside down. For every subfield K of E, there is a corresponding
subgroup of Gal(E/Q) consisting of the automorphisms that fix every element of K (that is,
Gal(E/K)). Going the other way, for every subgroup H of Gal(E/Q), there is a subfield of E
consisting of the elements of E that are fixed by every automorphism in H.

Definition: Let E be an extension of F , and let H be a subgroup of Gal(E/F ).
The fixed field of H is the set

EH := {x ∈ E | ϕ(x) = x for all ϕ ∈ H}

This correspondence between subfields of E and subgroups of Gal(E/Q) is inclusion revers-
ing: if J and H are subgroups of Gal(E/Q) and J ⊆ H, then every field element fixed by all
the automorphisms in H will also be fixed by all the automorphisms in J . This means the fixed
field of J must be bigger than or equal to the fixed field of H, i.e. EJ ⊇ EH . This is why the
subgroup lattice is an “upside down” version of the subfield lattice. The fundamental theorem
of Galois theory says that this inclusion-reversing bijection between subfields and subgroups
always happens, as long as the fields in question aren’t too weird (they’re finite or characteristic
zero), and the extension you’re studying is a splitting field of some polynomial.

Fundamental Theorem of Galois Theory

Let F be a finite field or a field of characteristic zero. Let E be the splitting field
over F of some polynomial in F [x]. Then the following two maps are inverses
(and hence define a bijection)

{
Subfields of

E containing F

}
↔
{

Subgroups of
Gal(E/F)

}
K 7→ Gal(E/K)

EH ←[ H

Furthermore, for any subfield K of E containing F , the following are true

1. [E : K] = |Gal(E/K)| and [K : F ] = |Gal(E/F )|/|Gal(E/K)|.

2. If K is the splitting field over F of some polynomial, then Gal(E/K) is a
normal subgroup of Gal(E/F ), and Gal(K/F ) ∼= Gal(E/F )/Gal(E/K).

Example

Let E be the splitting field for x7−1, and suppose we know the (true) fact that x6+x5+· · ·+x+1
is irreducible in Q[x]. Let’s study the subfields of E over Q by studying the subgroups of
Gal(E/Q) and using the fundamental theorem of Galois theory.

First, let ξ = e
2πi
7 . The roots of x7 − 1 are the elements {1, ξ, ξ2, . . . , ξ6}, so E = Q(ξ), and

[E : Q] = 6. Because the minimal polynomial for 1 is x− 1, and the minimal polynomial for all
other roots is x6 + x5 + · · ·+ x+ 1, it follows that every Q-automorphism must take 1 to itself,
and permute the roots of x6 + x5 + · · ·+ x+ 1. But be careful: not every permutation of these



roots represents a valid Q-automorphism – for example, by the properties of homomorphisms,
if ξ 7→ ξ2, then that forces ξ2 7→ (ξ2)(ξ2) = ξ4.

Draw the Q-automorphism of E given by ξ 7→ ξ2 by showing how it permutes the roots of
x7 − 1. What is the order of the element of Gal(E/F ) that it represents?

Draw the Q-automorphism of E given by ξ 7→ ξ3 by showing how it permutes the roots of
x7 − 1. What is the order of the element of Gal(E/F ) that it represents?

Notice that this second Q-automorphism, τ , has order 6, so since |Gal(E/Q)| = [E : Q] = 6,
it must be the case that τ generates the entire group Gal(E/F ) ∼= Z6. Draw the lattice of
subgroups of Gal(E/F ) and the lattice of subfields of E containing F .

Practice problems: .

1. Draw the lattice of subfields for the splitting field E of x5−1 over Q and the lattice of
subgroups of Gal(E/Q). You may use the fact that x4 +x3 +x2 +x+1 is irreducible
in Q[x].

2. Draw the lattice of subfields for the splitting field E of x4− 2 over Q and the lattice
of subgroups of Gal(E/Q).



Lecture 17: FTOGT Examples

Monday, we stated the fundamental theorem of Galois theory:

Fundamental Theorem of Galois Theory

Let F be a finite field or a field of characteristic zero. Let E be the splitting field
over F of some polynomial in F [x]. Then the following two maps are inverses
(and hence define a bijection)

{
Subfields of

E containing F

}
↔
{

Subgroups of
Gal(E/F)

}
K 7→ Gal(E/K)

EH ←[ H

Furthermore, for any subfield K of E containing F , the following are true

1. [E : K] = |Gal(E/K)| and [K : F ] = |Gal(E/F )|/|Gal(E/K)|.

2. If K is the splitting field over F of some polynomial, then Gal(E/K) is a
normal subgroup of Gal(E/F ), and Gal(K/F ) ∼= Gal(E/F )/Gal(E/K).

Today, we do two examples to illustrate the theory, in which we compare the lattice of subfields
of an extension with the lattice of subgroups of its Galois group.

Example

Let E be the splitting field for x7−1, and suppose we know the (true) fact that x6+x5+· · ·+x+1

is irreducible in Q[x]. Let ξ = e
2πi
7 . The roots of x7 − 1 are the elements {1, ξ, ξ2, . . . , ξ6}, so

E = Q(ξ, ξ2, . . . , ξ6)

= Q(ξ)

Because the minimal polynomial for ξ is x6 + x5 + · · ·+ x+ 1, it follows that [E : Q] = 6.

How many elements are there of Gal(E/Q)?

Any Q-automorphism of E is determined by where it sends ξ. Where could a Q-automorphism
of E possibly send ξ?



Draw the Q-automorphism of E given by ξ 7→ ξ2 by showing how it permutes the roots of
x7 − 1. What is the order of the element of Gal(E/F ) that it represents?

Draw the Q-automorphism of E given by ξ 7→ ξ3 by showing how it permutes the roots of
x7 − 1. What is the order of the element of Gal(E/F ) that it represents?

Notice that this second Q-automorphism, τ , has order 6, so it must generates the entire group
Gal(E/F ) ∼= Z6. Draw the lattice of subgroups of Gal(E/F ) and the lattice of subfields of E
containing F .

Example

Let E be the splitting field for x4− 2 over Q. Let’s study the subfields of E and the subgroups
of Gal(E/Q).

First, we know that the roots of x4 − 2 in C are { 4
√

2, i 4
√

2,− 4
√

2,−i 4
√

2}, so

E = Q(
4
√

2, i
4
√

2,− 4
√

2,−i 4
√

2)

= Q(
4
√

2, i)

What is the degree [E : Q]? What does this tell you about Gal(E/Q)?



Describe the elements of Gal(E/Q) in terms of where they send the elements 4
√

2 and i. Draw
the permutation of the roots of x4 − 2 given by each.

What familiar group is Gal(E/Q) isomorphic to? Draw the lattice of subgroups of Gal(E/Q).



Solvability

The fundamental theorem of Galois theory gives us the understanding about Galois groups
that we need to start proving things about solvability of quintics. Recall that we were able to
show that certain geometric constructions are impossible by translating facts about geometric
constructions into facts about degrees of field extensions. Similarly, we can also translate facts
about “having roots that can be expressed just in terms of rational numbers and symbols n

√
”

into facts about Galois groups. To study this problem, we need to define rigorously the concept
of “having roots that can be expressed in terms of rational numbers and n

√
.”

Definition: Let F be a field. A polynomial f(x) ∈ F [x] is solvable by radicals
over F if it splits in some extension field of the form F (a1, . . . , an), where
the elements ai have the property that there are positive integers k1, . . . , kn
such that

ak11 ∈ F
ak22 ∈ F (a1)

ak33 ∈ F (a1, a2)

...

aknn ∈ F (a1, a2, . . . , an−1)

Soon, we will prove that whenever a polynomial is solvable by radicals, the Galois group of its
splitting field must be a solvable group.

Definition: A group G is solvable if there are subgroups H0, H1, . . . ,Hk such
that

{e} = H0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ Hn = G

with the property that each Hi is normal in Hi+1, and Hi+1/Hi is abelian.

Next class, we’ll see examples of solvable groups and study their properties.



Lecture 18: More on Solvable Groups

Last class, we interrupted our discussion of Galois groups to define two concepts: the notion
of a polynomial being solvable by radicals, and the definition of a solvable group. Today we’ll
learn some facts about solvable groups, then give some examples of Galois groups that are
solvable. We’ll prove on Monday that whenever a polynomial is solvable by radicals, the Galois
group of its splitting field is a solvable group.

Proposition: Let N be a normal subgroup of a group G. If G is solvable, then G/N is solvable.

Proof: Because G is solvable, there are subgroups

{id} = H0 ⊆ H1 ⊆ · · · ⊆ Hn = G

such that Hi is normal in Hi+1 and Hi+1/Hi is abelian. Let ϕ : G→ G/N be the quotient
homomorphism. We will verify that the sequence of subgroups

{id} = ϕ(H0) ⊆ ϕ(H1) ⊆ · · · ⊆ ϕ(Hn) = G/N

satisfies the conditions needed to prove that G/N is solvable.

ϕ(Hi) is normal in ϕ(Hi+1): Let y ∈ ϕ(Hi) and x ∈ ϕ(Hi+1), so y = ϕ(ỹ) and x =
ϕ(x̃), where ỹ ∈ Hi and x̃ ∈ Hi+1. Then

xyx−1 = ϕ(x̃)ϕ(ỹ)ϕ(x̃)−1 = ϕ(x̃ỹx̃−1) = ϕ(ỹ′)

for some ỹ′ ∈ Hi (using the fact that Hi is normal in Hi+1). This means that
xyx−1 ∈ ϕ(Hi), so Hi is normal in Hi+1.

ϕ(Hi+1)/ϕ(Hi) is abelian: Consider the homomorphism

Hi+1 → ϕ(Hi+1)/ϕ(Hi)

given by following ϕ with the quotient homomorphism. This is a surjective homomor-
phism that contains Hi, so it defines a homomorphism Hi+1/Hi → ϕ(Hi+1)/ϕ(Hi).
By the first isomorphism theory of group theory, ϕ(Hi+1)/ϕ(Hi) is the quotient of
an abelian group, hence is itself abelian.

Proposition: Let N be a normal subgroup of a group G. If N and G/N are solvable, then G
is solvable.

Proof: Let

{id} = H0 ⊆ H1 ⊆ · · · ⊆ Hn = N and

{id} = J0 ⊆ J1 ⊆ · · · ⊆ Jk = G/N

be sequences of subgroups showing that N and G/N are solvable. To find such a sequence
of subgroups of G, let ϕ : G → G/N be the quotient homomorphism and consider the
sequence.

{id} = H0 ⊆ H1 ⊆ · · · ⊆ Hn = N = ϕ−1(J0) ⊆ ϕ−1(J1) ⊆ · · · ⊆ ϕ−1(Jk) = G

The fact that the solvability conditions are satisfied for the Hi subgroups follows from
the fact that they arise from the sequence of subgroups that shows N is solvable. Then,
consider the surjective homomorphism ϕ−1(Ji+1)→ Ji+1/Ji given by following ϕ by the
quotient homomorphism. Its kernel is ϕ−1(Ji), so ϕ−1(Ji) must be normal, and the image
is Ji+1/Ji, so by the first isomorphism theorem of Group theory, ϕ−1(Ji+1)/ϕ

−1(Ji) ∼=
Ji+1/Ji which is abelian.



Example

We showed last time that the dihedral group D4 is solvable. What about the subgroup of the
symmetries of two squares?

v3 v4

v1v2

w3 w4

w1w2

To be precise, by “symmetry of two squares”, I mean any permutation σ of the 8 verticies
above such that drawing the lines

σ(v1)− σ(v2)− σ(v3)− σ(v4)− σ(v1) and σ(w1)− σ(w2)− σ(w3)− σ(w4)− σ(w1)

still makes the two squares in the figure above. Let G be this group of symmetries, H be the
subgroup of G consisting of the symmetries that don’t exchange the two squares, and let K be
the subgroup of H that consists the symmetries that fix every one of the w verticies. Clearly,
K ∼= D4, and H ∼= D4 ⊕ D4. We have the sequence of subgroups K ⊆ H ⊆ G. K ∼= D4 is
solvable, and H/K ∼= D4 is also solvable, so H ∼= D4 ⊕ D4 is solvable. Similarly, since H is
solvable and G/H ∼= Z2 is solvable, then G is solvable.

Solvable Galois Groups

Proposition: Let F be any subfield of C, and n be a positive integer, and E be the splitting
field for xn − 1 over F . Then Gal(E/F ) is abelian.

Proof: Let ϕ,ψ ∈ Gal(E/F ). We will prove the claim by verifying that ϕψ = ψϕ.

Let ξ = e
2πi
n . The roots of xn − 1 are {1, ξ, ξ2, . . . , ξn−1}, and E = F (ξ). Any F -

automorphism is determined by its image of ξ, and each F -automorphism sends ξ to a
power of ξ. Suppose ϕ(ξ) = ξa and ψ(ξ) = ξb. Then

ψϕ(ξ) = ψ(ξa) = ψ(ξ)a = ξab and

ϕψ(ξ) = ϕ(ξb) = ϕ(ξ)b = ξab

so ψϕ(ξ) = ϕψ(ξ). Since any F -automorphism is determined by where it sends ξ, this
proves that ψϕ = ϕψ, so Gal(E/F ) is abelian.

Proposition: Let F be any subfield of C, n be a positive integer, c ∈ R, and let E be the
splitting field for xn − c over F . The Galois group Gal(E/F ) is solvable.

Proof: Let ξ = e
2πi
n , so the splitting field E for xn − c over F is given by E = F (ξ, n

√
c). By

the fundamental theorem of Galois theory, the field extensions F ⊆ F (ξ) ⊆ E = F (ξ, n
√
c)

correspond to the subgroups

{id} ⊆ Gal(E/F (ξ)) ⊆ Gal(E/F )

Because F (ξ) is the splitting field for xn − 1 over F , it follows that Gal(E/F (ξ)) is a
normal subgroup of Gal(E/F ) and that Gal(E/F )/Gal(E/F (ξ)) ∼= Gal(F (ξ)/F ), which
is normal by the previous proposition.



It remains only to show that Gal(E/F (ξ)) is abelian. To show this, note that the zeros
of xn − c are { n

√
c, n
√
cξ, . . . , n

√
cξn−1}, so E = F (ξ)( n

√
c), and every F (ξ)-automorphism

of E is determined by which zero of xn − c it sends n
√
c.

Suppose ϕ( n
√
c) = n

√
cξa and ψ( n

√
c) = n

√
cξb. Then

ψϕ( n
√
c) = ψ( n

√
cξa) = ψ( n

√
c)ξa = n

√
cξa+b and

ϕψ( n
√
cξ) = ϕ( n

√
cξb) = ϕ( n

√
c)ξb = n

√
cξa+b

so ψϕ = ϕψ. Therefore, Gal(E/F (ξ)) is abelian.



Lecture 19: Solvable by Radicals implies
Solvable Galois Group

We’re finally ready to prove the relationship between the notion of a polynomial being “solvable
by radicals” and a group being “solvable”.

Theorem: Let F be a subfield of C, let E be the splitting field of f(x) ∈ F [x]. If f(x) is
solvable by radicals over F , then Gal(E/F ) is solvable.

Proof: Suppose f(x) is solvable by radicals. Then there are elements a1, . . . , an such that
F (a1, . . . , an) contains E and for all i ≤ n, there is some positive integer ki such that
akii ∈ F (a1, . . . , ai−1).

Let ci ∈ F (a1, . . . , ai−1) be the element akii .

The proof involves studying the two towers of field extensions described below.

F1 = spl. field of xk1 − c1 over F

= F (roots of xk1 − c1)
F2 = spl. field of xk2 − c2 over F1

= F (roots of xk1 − c1 and roots of xk2 − c2)
...

Fn = spl. field of xkn − cn over Fn−1

= F (roots of xk1 − c1 and xk2 − c2 . . . and xkn−1 − cn−1)

and

E1 = spl. field of xk1 − c1 over E

= E(roots of xk1 − c1)
E2 = spl. field of xk2 − c2 over E1

= E(roots of xk1 − c1 and roots of xk2 − c2)
...

En = spl. field of xkn − cn over En−1

= E(roots of xk1 − c1 and xk2 − c2 . . . and xkn−1 − cn−1)

F
E

F1

E1

F2

E2

F3

E3

...

Fn

En

First, let’s notice that Ei is the splitting field for f(x) ∈ Fi[x] over Fi. Because Fn contains
each of the elements ai, it contains all of F (a1, . . . , an) and hence contains all roots of
f(x) already. So Fn = En.

If we study any one of the regions made of Fi, Ei, Fi+1, Ei+1 (including i = 0, where
F0 = F and E0 = E), we notice that

• Ei is the splitting field for f(x) over Fi

• Fi+1 is the splitting field for xki+1 − ci+1 over Fi



• Ei+1 is the splitting field for f(x)(xki+1 − ci+1) over Fi

Therefore, the fundamental theorem of Galois theory tells us that

Gal(Fi+1/Fi) ∼=
Gal(Ei+1/Fi)

Gal(Ei+1/Fi+1)
and Gal(Ei/Fi) ∼=

Gal(Ei+1/Fi)

Gal(Ei+1/Ei)

from which we can apply our knowledge about solvable groups to deduce that

Gal(Ei+1/Fi+1) solvable⇒ Gal(Ei+1/Fi) solvable and

Gal(Ei+1/Fi) solvable⇒ Gal(Ei/Fi) solvable

which, when combine, give

Gal(Ei+1/Fi+1)solvable⇒ Gal(Ei/Fi)solvable

Because we know that Fn = En, it follows that Gal(En/Fn) is the trivial group (and
hence is solvable). Then, the composition of implications

Gal(En/Fn)solvable⇒ Gal(En−1/Fn−1)solvable⇒ · · · ⇒ Gal(E/F )solvable

proves the claim.

The converse of the statement is also true: if Gal(E/F ) is solvable, then f(x) is solvable by
radicals. We will not prove it. However, it has some nice consequences.

Claim: Let f(x) ∈ Q[x] be a polynomial of degree ≤ 4. Then f(x) is solvable by radicals.

Proof: Let E be the splitting field of f(x). We know (from the homework assignment) that
Gal(E/F ) is a subgroup of Sn, where n is the degree of f .

• S2 ∼= Z2 is abelian, so it is solvable.

• S3 has a normal subgroup A3 (the alternating group) consisting of the even permu-
tations. The chain of subgroups {id} ⊆ A3 ⊆ S3 satisfies the conditions necessary to
show that S3 is solvable.

• S4 has a normal subgroup A4 consisting of the even permutations. A4 has a normal
subgroup isomorphic to Z2 × Z2, which is abelian. The chain of subgroups {id} ⊆
Z2 × Z2 ⊆ A4 ⊆ S4 satisfies the conditions necessary to show that S4 is solvable.

Because every subgroup of a solvable group is solvable, and Gal(E/F ) is a subgroup of
either S2, S3, or S4, this shows that f(x) is solvable by radicals.

For example, consider the cubic equation ax3 + bx2 + cx+ d ∈ Q[x]. Let

C =
3

√
2b3 − 9abc+ 27a2d+

√
(2b3 − 9abc+ 27a2d)2 − 4(b2 − 3ac)3

2

Then the roots of f(x) are given by

x1 =
−1

3a

(
b+ C +

b2 − 3ac

C

)
x2 =

−1

3a

(
b+
−1 +

√
−3

2
C +

−1−
√
−3

2

b2 − 3ac

C

)
x3 =

−1

3a

(
b+
−1−

√
−3

2
C +

−1 +
√
−3

2

b2 − 3ac

C

)



Lecture 20: Some Quintics are not Solvable
by Radicals

We’re ready for the last result of the course, that some quintic (degree five) polynomials in Q[x]
are not solvable by radicals. First, we’ll use the concept of conjugacy classes to prove that the
group S5 is not solvable. Then, we’ll find a quintic polynomial in Q[x] for which the Galois
group of the splitting field over Q is S5. Using the theorem we proved on Monday, this will
prove that f(x) is not solvable by radicals.

Conjugacy classes, normal subgroups, and S5

Definition: Let a, b be elements of the group G. We say that a is conjugate to
b if there is some g ∈ G such that gag−1 = b.

Proposition: The “conjugacy” property is an equivalence relation.

Proof: Fill me in!

Reflexivity:

Symmetry:

Transitivity:

An equivalence relation on a set always defines a partition of the set into equivalence classes.
In this case, the equivalence class containing a is called the conjugacy class of a.

Definition: The conjugacy class of a ∈ G is cl(a) = {gag−1 | g ∈ G}.

Example: What are the conjugacy classes of S3? Fill me in!



Remarks about conjugacy classes:

1. If a conjugacy class contains just one element a, then gag−1 = a for all g ∈ G.
In other words, cl(a) = {a} if and only if ga = ag for all elements of G. Recall
that the center of a group G, written Z(G), is the subgroup of G consisting of all
such elements of G. The identity of a group commutes with all other elements, so
id ∈ Z(G) and cl(id) = {id}.

2. Conjugacy classes are not subgroups! (except, of course, cl(id) = {id})
3. If H is a normal subgroup of a group G, then for all g ∈ G and h ∈ H, the normality

of H means that ghg−1 ∈ H. Therefore, for any h ∈ H, all elements of the conjugacy
class cl(h) must also be inside H, so H must be a union of conjugacy classes.

Question: What are all normal subgroups of S3?

Answer: We saw that S3 has one conjugacy class of size 1, one of size 2, and one of size 3. Any
subgroup of G must contain {id} and also must have a number of elements dividing 6.
The only possible ways to take unions of conjugacy classes that meets these requirements
gives the subgroups {id}, A3, and S3.

We can use similar logic to find the normal subgroups of A5. This time, I’ll tell you the
conjugacy classes.

Proposition: The only normal subgroups of A5 are {id} and A5.

Proof: The conjugacy classes of A5 are the following:

• {id}, containing 1 element

• {all permutations of the form (a b)(c d)}, containing 15 elements.

• {all permutations of the form (a b c)}, containing 20 elements.

• {(1 2 3 4 5), (1 2 4 5 3), (1 2 5 3 4), (1 3 5 4 2), (1 3 2 5 4), (1 3 4 2 5),
(1 4 3 5 2), (1 4 5 2 3), (1 4 2 3 5), (1 5 4 3 2), (1 5 2 4 3), (1 5 3 2 4)}
which has 12 elements.

• {(1 2 3 5 4), (1 2 4 3 5), (1 2 5 4 3), (1 3 4 5 2), (1 3 2 4 5), (1 3 5 2 4),
(1 4 5 3 2), (1 4 2 5 3), (1 4 3 2 5), (1 5 3 4 2), (1 5 4 2 3), (1 5 2 3 4)}
which has 12 elements.

The only way to take unions of these conjugacy classes in such a way that {id} is included
and the total number of elements divides |A5| = 60 gives the subgroups {id} and A5.

Corollary: S5 is not solvable.

Proof: If S5 were solvable, then A5 must also be solvable, since subgroups of solvable groups
are themselves solvable. But then there would be subgroups

{id} = H0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ Hn−1 ⊆ Hn = A5

where Hn−1 is a proper normal subgroup of A5 and A5/Hn−1 is abelian. This is impossible
because the only normal subgroups of A5 are {id} and A5.

A Galois group isomorphic to S5



Our goal for today is to find a quintic polynomial in Q[x] which is not solvable by radicals.
We know that if we can find a polynomial for which the Galois group of its splitting field is
isomorphic to S5, we’ll be done. But there’s a problem. So far in our study of Galois theory,
we’ve considered splitting fields of polynomials that have pretty easy-to-write-down roots, like√

3 or 3
√

2 or i 4
√

2. This makes it relatively easy to analyze the Galois group of the splitting
field, because we can explicitly write down the action of the Q-automorphism on the roots to
check whether it is an automorphism.1 When we’re looking for a quintic in Q[x] that isn’t
solvable by radicals, we’re guaranteed that our roots won’t have such nice expressions! As a
consequence, we need to work harder to analyze its Galois group. In particular, we’ll need to
have a theorem that says “whenever the order of a group is divisible by a prime number p, it
has an element of order p”.

Definition: The centralizer of an element a ∈ G, written C(a), consists of all
g ∈ G such that gag−1 = a. That is, it consists of all g such that ga = ag.

Proposition: The map of sets

{left cosets of C(a)} → {elements of cl(a)}
[g] 7→ gag−1

is well-defined and is a bijection.

Proof: Fill me in!

Well-defined:

Injective:

Surjective: .

Corollary: For any group G,

|G| =
∑
a∈A
|cl(a)|

(
A consists of a single element

from each conjugacy class of G

)
= |Z(G)|+

∑
a∈A2

|cl(a)|
(

A2 consists of a single element
from each conjugacy class of G of size ≥ 2

)
= |Z(G)|+

∑
a∈A2

|G|
|C(a)|

Proposition: Let G be a group. If p is a prime number that divides |G|, then G has an element
of order p.

1remember: not all permutations of the roots define an element of the Galois group! Sometimes algebraic
relations between the roots impose restrictions on what the permutation could be.



Proof: Certainly it’s true if |G| = p (the only group whose order is p is Zp, which has a element
of order p). Assume |G| = n, and that we have proven the claim is true for all groups of
size ≤ n− 1. Consider the formula

|G| = |Z(G)|+
∑
a∈A2

|G|
|C(a)|

and consider the following two cases

p divides the order of some C(a): Each C(a) is a proper subgroup of G (if C(a) were
all of G, then the conjugacy class containing a would have just one element). By the
inductive hypothesis, C(a) has an element of order p, so therefore G has an element
of order p.

p does not divide the order of any C(a): In this case, p divides each of the numbers
|G|/|C(a)|, and we already know that p divides |G|, so therefore p must also divide
|Z(G)|. Then Z(G) is an abelian subgroup of G whose order is divisible by p, so by
the classification theorem of finite abelian groups, it has an element of order p.

Theorem: The quintic f(x) = 3x5 − 15x+ 5 is not solvable by radicals over Q.

Proof: Let E be the splitting field of f(x) over Q. It suffices to prove that Gal(E/Q) ∼= S5.
The graph of f(x) shows that there are five roots: three real roots and two complex roots
which are complex conjugates of one another. We know that Gal(E/Q) is a subgroup
of S5 where the element of S5 corresponding to a Q-automorphism is described by the
permutation it induces on the five roots of f(x).

The complex conjugation map is an element of Gal(E/Q) which corresponds, under the
identification Gal(E/Q) ∼= S5, to a cycle of length 2 (since it fixes three elements and
permutes the other two).

Let α be any root of f(x). Because f(x) is irreducible (by Eisenstein), [Q(α) : Q] = 5,
so by the fundamental theorem of Galois theory, |Gal(E/Q)| is divisible by 5. Therefore,
Gal(E/Q) has an element of order 5, which must correspond under the identification
Gal(E/Q) ∼= S5 to a cycle of length 5 (cycles of length 5 are the only elements of order 5
in S5).

If a subgroup of S5 contains a 5-cycle and also a 2-cycle, then it must be the entire group
S5.

Therefore, Gal(E/Q) ∼= S5 is not solvable, hence f(x) is not solvable by radicals over Q.


