Algebra Homework 6

Due by the *start* of class on Wednesday Nov. 25

Problem 1:

- 1. Find the minimal polynomial for $\sqrt{3} + \sqrt{5}$ in $\mathbb{Q}[x]$.
- 2. Find the minimal polynomial for $\sqrt{3} + \sqrt{5}$ in $\mathbb{Q}(\sqrt{3})$ $5)[x]$.
- 3. Find the minimal polynomial for $\sqrt{3} + \sqrt{5}$ in $\mathbb{Q}(\sqrt{3})$ $(10)[x]$.
- 4. Find the minimal polynomial for $\sqrt{3} + \sqrt{5}$ in $\mathbb{Q}(\sqrt{3})$ (15) [x].

Commentary: The moral of this exercise is that whenever you have an element α of a field, the answer to the question "What is the minimal polynomial of α ?" depends on exactly which polynomial ring you're considering. This should remind you of the concept of a polynomial being irreducible: a single polynomial like $x^2 + 1$ might be irreducible in some polynomial rings (e.g. $\mathbb{Q}[x]$) and reducible in others (e.g. $\mathbb{C}[x]$). So it doesn't make sense to ask "Is $x^2 + 1$ irreducible?" until you specify the polynomial ring you're considering. Likewise, it doesn't make sense to ask "What is the minimal polynomial of *α*?" until you specify the polynomial ring you're looking for the minimal polynomial in.

Problem 2: Prove that there are exactly two R-automorphisms of \mathbb{C} : the identity map and the complex conjugation map – there are no others.

Commentary: This shows that $Gal(\mathbb{C}/\mathbb{R})$ has exactly two elements, the identity automorphism and the complex conjugation automorphism.

Problem 3:

- 1. Describe the Galois group of the splitting field of $x^4 + 1$ over \mathbb{Q} .
- 2. Describe the Galois group of the splitting field of $x^2 + 9$ over \mathbb{Q} .
- 3. Describe the Galois group of the splitting field of $x^2 10x + 21$ over Q.
- 4. Let $E = \mathbb{Q}(\sqrt{2})$ 3*,* $\sqrt{5}$). Describe the Galois group Gal(E/\mathbb{Q}).
- **Problem 4:** Let $f(x) \in F[x]$ be a polynomial of degree *n*, and *E* be the splitting field for *f* over *F*.
	- 1. Show that $[E : F] \leq n!$. (The exclamation point denotes factorial. Hint: review the proof of the construction of the splitting field)
	- 2. Prove that $Gal(E/F)$ is isomorphic to some subgroup of the symmetric group S_n . (Hint: what is the maximum number of roots that *F* could have in *E*?)
- **Problem 5:** Let *E* be the splitting field of $x^6 8 \in \mathbb{Q}[x]$ over \mathbb{Q} . Find two roots a, b of $x^6 8$ such that no element of $Gal(E/\mathbb{Q})$ sends *a* to *b*. Justify your answer. (Hint: $x^4 + 2x^2 + 4$ divides $x^6 - 8$.)

Commentary: The reason I assigned this problem is that many students make the mistake of thinking that for a splitting field E of some polynomial over \mathbb{Q} , the group $Gal(E/\mathbb{Q})$ can be thought of as all possible permutations of the roots of the polynomial (in this case, roots of $x^6 - 8$). While it's good to think of elements of the Galois group in terms of how they permute the roots of the polynomial, make sure you don't think that *every* permutation of the roots is realized by some element of the Galois group.