Algebra Homework 1

Due by the *start* of class on Wednesday Sept. 23

The problems with the asterisks * might need material from Wednesday's class.

Problem 1: Below are two possible addition and multiplication tables for a commutative ring. In each case, determine the following:

- What is the additive identity of the ring (the term normally called "0")?
- Does the ring has a multiplicative identity (the term normally called "1")? If so, what is it?
- What are the zero divisors of the ring?
- What are the units of the ring?

You don't need to show work.

1.

+	A	B	C	D	×	*	Α	В	С	D
Α	Α	В	C	D	A	ł	А	А	Α	А
В	В	Α	D	С	Ē	3	А	В	С	D
С	С	D	A	В		2	А	С	D	В
D	D	C	В	Α	Ī)	А	D	В	С

2.

+	A	В	C	D		*	Α	В	C	D
А	Α	В	С	D	-	А	Α	Α	Α	Α
В	В	Α	D	С	-	В	А	В	А	В
С	С	D	Α	В	-	С	А	Α	С	С
D	D	С	В	Α	-	D	Α	В	С	D

Problem 2: Consider the following venn diagram of different kinds of rings. For each region (labeled 1-6), give an example of a ring that belongs to that region. For example, the answer to 4 should be a commutative ring with identity which is *not* an integral domain. You do not need to justify your answers or show your work.

- 1. (Ring that is non-commutative and has no identity)
- 2. (Commutative ring with no identity)
- 3. (Non-commutative ring with identity)
- 4. (Commutative ring with identity which is not an integral domain)
- 5. (Integral domain which is not a field)
- 6. (Field)
- **Problem 3:** What are the units in the ring \mathbb{Z}_n , where *n* is any positive integer? You do not need to prove your answer.
- Problem 4*: Check whether each of the following maps are homomorphisms. You do not need to show your work. In each case, if the map is a homomorphism, write down its kernel and image. Otherwise, explain (in one sentence) why the map is not a homomorphism.

1.

$$\varphi : \mathbb{Z}[x] \to \mathbb{Z} \times \mathbb{Z}$$

$$a_0 + a_1 x + a_2 x^2 + \ldots \mapsto (a_0, a_1)$$
2.

$$\varphi : \mathbb{Z}_2 \to \mathbb{Z}$$

$$[0] \mapsto 0$$

$$[1] \mapsto 1$$
3.

$$\varphi : \mathbb{Z} \to \mathbb{Z}_6 \times \mathbb{Z}_{15}$$

$$k \mapsto ([k], [k])$$

(the first bracket denotes the coset in \mathbb{Z}_6 , the second denotes the coset in \mathbb{Z}_{15}).

- **Problem 5:** Let a, b be elements of a ring R. Recall that the notation -a means the additive inverse of a. Prove the following claims.
 - 1. $(-a) \cdot (-b) = a \cdot b$.
 - 2. $(-1) \cdot (a) = -a$
 - 3. If R is a ring with identity and a is a unit, then -a is also a unit.
- **Problem 6:** An element x of a ring is called **nilpotent** if $x^n = 0$ for some n (the notation x^n is an abbreviation for x multiplied by itself n times). Let R be a ring with identity.
 - 1. Prove that if $x \in R$ is nilpotent, then 1 + x is a unit. (hint: try factoring $x^n 1$)
 - 2. Prove that if R is commutative, then the set of nilpotent elements of R is a subring.
- **Problem 7:** Let R be a ring. Prove that R[x] is an integral domain if and only if R is an integral domain.
- **Problem 8*:** Let R be an integral domain, and let F be its field of fractions. Prove that

$$\begin{aligned} R \to F \\ r \mapsto \frac{r}{1} \end{aligned}$$

is a homomorphism, and find its kernel.