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Question 1

Let I be the set of polynomials in Z[x] that have zero constant term.

1. Verify that I is an ideal. (4 points)

2. Verify that I is a prime ideal, but not a maximal ideal. (4 points)

3. Find a homomorphism ϕ : Q→ Z which is surjective, or prove why such a homomorphism
can not exist. (Hint: What could the kernel of ϕ be?) (4 points)
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Question 2

1. Let f(x) = anx
n + an−1x

n−1 + · · ·+ a0, where each ai ∈ Z and a0, an 6= 0. Let p/q be a
root of f(x), where p and q are coprime. Prove that p divides a0, and that q divides an.
(6 points)

2. Verify that f(x) = x2 + x+ 2 ∈ Z3[x] is irreducible. (4 points)

3. How many elements does Z3[x]/〈x2 + x+ 2〉 contain? (4 points)

Page 3/9



Name:

Question 3

1. State Eisenstein’s criterion. Be precise, as though you were writing a textbook! (6 points)

2. Define the degree of a field extension. (4 points)

3. Let E be a field extension of F , and let f(x) be an irreducible polynomial in F [x] with
deg(f(x)) ≥ 2. Prove that if deg(f(x)) is coprime to [E : F ], then f(x) has no roots in
E. (Hint: If α ∈ E were a root, what could [F (α) : F ] be?) (6 points).
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Question 4

Suppose the points (0, 0) and (1, 0) are drawn on the plane R2.

1. Construct the angle π/3 using only the three fundamental straightedge and compass
operations from class. Your answer should consist of a sequence of drawings that illustrates
the construction. (6 points)

2. Think of a point on R2 which cannot be constructed, and has coordinates that are algebraic
over Q. Give the coordinates of the point, and explain why it cannot be constructed. (6
points)
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Question 5

Let α = e2πi/n, where n is an integer bigger than 3.

1. Verify that Q(α) is a splitting field over Q. (6 points)

2. Let n = 6. Find two roots a, b of x6 − 1 such that no element of Gal(Q(α)/Q) sends a to
b. Justify your answer. (Hint: Some roots of x6 − 1 are also roots of x3 − 1, but other
roots of x6 − 1 are not.) (8 points)
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Question 6

Let F be a field of characteristic zero, and E be the splitting field of some polynomial in F [x].

1. Prove that there are finitely many subfields of E that contain F . (4 points)

2. Suppose that Gal(E/F ) ∼= S4, and remember that S4 has 24 elements. Determine how
many subfields K of E containing F have the property that [K : F ] = 12. (Hint: It is
easier to count subgroups than subfields!) (6 points)

Page 7/9



Name:

Question 7

Let E = Q(
√

2,
√

3,
√

5).

1. Find generators of the group Gal(E/Q). (6 points)

2. What familiar group is Gal(E/Q) isomorphic to? (4 points)

3. Describe a subgroup of order four of Gal(E/Q) in terms of the generators you gave in
part (1), and describe its fixed field in E. (6 points)
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Question 8

1. Recall that for n ≥ 3, the dihedral group Dn is the group of symmetries of a regular
n-gon. Prove that Dn is a solvable group. (6 points)

2. Define what it means for a polynomial f(x) to be solvable by radicals. (4 points)

3. Let F be a field of characteristic zero, and let f(x) ∈ F [x] be a polynomial which is
solvable by radicals, and E be the splitting field for f(x) over F . Give an example of a
group which could not possibly be isomorphic to Gal(E/F ). Briefly explain your answer
in one or two sentences. (4 points)

You’re done with Math 401! To protect the exam,
please restrict your fallen tears of joy to this box.
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