UNIVERSITY OF TORONTO Faculty of Arts and Science

DECEMBER 2014 EXAMINATIONS

MAT401H1F

Duration - 3 hours

No Aids Allowed

Name: _____

Student Number: _____

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

Grades:

- **Question 1:** _____ (out of 12)
- **Question 2:** _____ (out of 14)
- **Question 3:** _____ (out of 16)
- **Question 4:** _____ (out of 12)
- **Question 5:** _____ (out of 14)
- **Question 6:** _____ (out of 10)
- **Question 7:** _____ (out of 16)
- **Question 8:** _____ (out of 14)
 - **Total:** _____ (out of 108)

Question 1

Let I be the set of polynomials in $\mathbb{Z}[x]$ that have zero constant term.

1. Verify that I is an ideal. (4 points)

2. Verify that I is a prime ideal, but not a maximal ideal. (4 points)

3. Find a homomorphism $\varphi : \mathbb{Q} \to \mathbb{Z}$ which is surjective, or prove why such a homomorphism can not exist. (Hint: What could the kernel of φ be?) (4 points)

Question 2

1. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$, where each $a_i \in \mathbb{Z}$ and $a_0, a_n \neq 0$. Let p/q be a root of f(x), where p and q are coprime. Prove that p divides a_0 , and that q divides a_n . (6 points)

2. Verify that $f(x) = x^2 + x + 2 \in \mathbb{Z}_3[x]$ is irreducible. (4 points)

3. How many elements does $\mathbb{Z}_3[x]/\langle x^2 + x + 2 \rangle$ contain? (4 points)

Name: _

Question 3

1. State Eisenstein's criterion. Be precise, as though you were writing a textbook! (6 points)

2. Define the degree of a field extension. (4 points)

3. Let E be a field extension of F, and let f(x) be an irreducible polynomial in F[x] with $\deg(f(x)) \ge 2$. Prove that if $\deg(f(x))$ is coprime to [E : F], then f(x) has no roots in E. (Hint: If $\alpha \in E$ were a root, what could $[F(\alpha) : F]$ be?) (6 points).

Name: _

Question 4

Suppose the points (0,0) and (1,0) are drawn on the plane \mathbb{R}^2 .

1. Construct the angle $\pi/3$ using only the three fundamental straightedge and compass operations from class. Your answer should consist of a sequence of drawings that illustrates the construction. (6 points)

Think of a point on R² which cannot be constructed, and has coordinates that are algebraic over Q. Give the coordinates of the point, and explain why it cannot be constructed. (6 points)

Name: _

Question 5

Let $\alpha = e^{2\pi i/n}$, where n is an integer bigger than 3.

1. Verify that $\mathbb{Q}(\alpha)$ is a splitting field over \mathbb{Q} . (6 points)

2. Let n = 6. Find two roots a, b of $x^6 - 1$ such that no element of $\operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ sends a to b. Justify your answer. (Hint: Some roots of $x^6 - 1$ are also roots of $x^3 - 1$, but other roots of $x^6 - 1$ are not.) (8 points)

Question 6

Let F be a field of characteristic zero, and E be the splitting field of some polynomial in F[x].

1. Prove that there are finitely many subfields of E that contain F. (4 points)

2. Suppose that $\operatorname{Gal}(E/F) \cong S_4$, and remember that S_4 has 24 elements. Determine how many subfields K of E containing F have the property that [K : F] = 12. (Hint: It is easier to count subgroups than subfields!) (6 points)

Question 7

Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}).$

1. Find generators of the group $\operatorname{Gal}(E/\mathbb{Q})$. (6 points)

2. What familiar group is $\operatorname{Gal}(E/\mathbb{Q})$ isomorphic to? (4 points)

3. Describe a subgroup of order four of $\operatorname{Gal}(E/\mathbb{Q})$ in terms of the generators you gave in part (1), and describe its fixed field in E. (6 points)

Name:

Question 8

1. Recall that for $n \ge 3$, the dihedral group D_n is the group of symmetries of a regular *n*-gon. Prove that D_n is a solvable group. (6 points)

2. Define what it means for a polynomial f(x) to be solvable by radicals. (4 points)

3. Let F be a field of characteristic zero, and let $f(x) \in F[x]$ be a polynomial which is solvable by radicals, and E be the splitting field for f(x) over F. Give an example of a group which could *not possibly* be isomorphic to $\operatorname{Gal}(E/F)$. Briefly explain your answer in one or two sentences. (4 points)

